【題目】已知各項為正數(shù)的等比數(shù)列{an}滿足:a7=a6+2a5 , 若存在兩項am、an使得
,則
的最小值為 .
【答案】![]()
【解析】解:設(shè)等比數(shù)列的公比為q,則由 a7=a6+2a5 , 可得到 a6q=a6+2
,
由于 an>0,所以上式兩邊除以a6 得到q=1+
,解得q=2或q=﹣1.
因為各項全為正,所以q=2.
由于存在兩項 am , an 使得
,所以,aman=8
,
即
=8
,∴qm+n﹣2=8,∴m+n=5.
當(dāng) m=1,n=4時,
=2; 當(dāng) m=2,n=3時,
=
;當(dāng) m=3,n=2時,
=
;
當(dāng) m=4,n=1時,
=
.
故當(dāng) m=2,n=3時,
取得最小值為
,
所以答案是
.
【考點精析】本題主要考查了基本不等式和等比數(shù)列的基本性質(zhì)的相關(guān)知識點,需要掌握基本不等式:![]()
,(當(dāng)且僅當(dāng)
時取到等號);變形公式:![]()
;{an}為等比數(shù)列,則下標(biāo)成等差數(shù)列的對應(yīng)項成等比數(shù)列;{an}既是等差數(shù)列又是等比數(shù)列== {an}是各項不為零的常數(shù)列才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln(ax+
)+
.
(1)若a>0,且f(x)在(0,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍;
(2)是否存在實數(shù)a,使得函數(shù)f(x)在(0,+∞)上的最小值為1?若存在,求出實數(shù)a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體
的棱長為
,
為
的中點,
為線段
上的動點,過點
,
,
的平面截該正方體所得的截面為
,則下列命題正確的是__________(寫出所有正確命題的編號).
![]()
①當(dāng)
時,
為四邊形;②當(dāng)
時,
為等腰梯形;
③當(dāng)
時,
與
的交點
滿足
;
④當(dāng)
時,
為五邊形;
⑤當(dāng)
時,
的面積為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】極坐標(biāo)系與直角坐標(biāo)系xOy有相同的長度單位,以原點O為極點,以x軸正半軸為極軸.已知曲線C1的極坐標(biāo)方程為ρ=2
sin(
),直線C的極坐標(biāo)方程為ρsinθ=1,射線θ=φ,θ=
+φ(φ∈[0,π])與曲線C1分別交異于極點O的兩點A,B.
(I)把曲線C1和C2化成直角坐標(biāo)方程,并求直線C2被曲線C1截得的弦長;
(II)求|OA|2+|OB|2的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,
是邊長為3的正方形,
平面
,
平面
,
.
![]()
(1)證明:平面
平面
;
(2)在
上是否存在一點
,使平面
將幾何體
分成上下兩部分的體積比為
?若存在,求出點
的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017湖北部分重點中學(xué)高三聯(lián)考)從編號為001,002,…,500的500個產(chǎn)品中用系統(tǒng)抽樣的方法抽取一個樣本,已知樣本編號從小到大依次為007,032,…,則樣本中最大的編號應(yīng)該為( )
A. 483 B. 482
C. 481 D. 480
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】養(yǎng)路處建造圓錐形無底倉庫用于貯藏食鹽(供融化高速公路上的積雪之用),已建的倉庫的底面直徑為12m,高4m,養(yǎng)路處擬建一個更大的圓錐形倉庫,以存放更多食鹽,現(xiàn)有兩種方案:一是新建的倉庫的底面直徑比原來大4m(高不變);二是高度增加4m(底面直徑不變).
(1)分別計算按這兩種方案所建的倉庫的體積;
(2)分別計算按這兩種方案所建的倉庫的表面積;
(3)哪個方案更經(jīng)濟(jì)些?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com