【題目】已知拋物線
的焦點為
,準(zhǔn)線為
,
是
上一點,直線
與拋物線交于
,
兩點,若
,則
=
A.
B.![]()
C.
D.![]()
【答案】B
【解析】
先根據(jù)題意寫出直線的方程,再將直線的方程與拋物線y2=2x的方程組成方程組,消去y得到關(guān)于x的二次方程,最后利用根與系數(shù)的關(guān)系結(jié)合拋物線的定義即可求線段AB的長.
解:拋物線C:y2=2x的焦點為F(
,0),準(zhǔn)線為l:x=﹣
,設(shè)M(x1,y1),N(x2,y2),M,N到準(zhǔn)線的距離分別為dM,dN,
由拋物線的定義可知|MF|=dM=x1+
,|NF|=dN=x2+
,于是|MN|=|MF|+|NF|=x1+x2+1.
∵
,則
,易知:直線MN的斜率為±
,
![]()
∵F(
,0),
∴直線PF的方程為y=±
(x﹣
),
將y=±
(x﹣
),代入方程y2=2x,得3(x﹣
)2=2x,化簡得12x2﹣20x+3=0,
∴x1+x2
,于是|MN|=x1+x2+1
1![]()
故選:B.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線
的焦點為
.
![]()
若點
為拋物線上異于原點的任一點,過點
作拋物線的切線交
軸于點
,證明:
.
![]()
,
是拋物線上兩點,線段
的垂直平分線交
軸于點
(
不與
軸平行),且
.過
軸上一點
作直線
軸,且
被以
為直徑的圓截得的弦長為定值,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著時代的發(fā)展和社會的進(jìn)步,“農(nóng)村淘寶”發(fā)展十分迅速,促進(jìn)“農(nóng)產(chǎn)品進(jìn)城”和“消費品下鄉(xiāng)”.“農(nóng)產(chǎn)品進(jìn)城”很好地解決了農(nóng)產(chǎn)品與市場的對接問題,使農(nóng)民收入逐步提高,生活水平得到改善,農(nóng)村從事網(wǎng)店經(jīng)營的人收入逐步提高.西鳳臍橙是四川省南充市的特產(chǎn),因果實呈橢圓形、色澤橙紅、果面光滑、無核、果肉脆嫩化渣、汁多味濃,深受人們的喜愛.為此小王開網(wǎng)店銷售西鳳臍橙,每月月初購進(jìn)西鳳臍橙,每售出1噸西鳳臍橙獲利潤800元,未售出的西鳳臍橙,每1噸虧損500元.經(jīng)市場調(diào)研,根據(jù)以往的銷售統(tǒng)計,得到一個月內(nèi)西鳳臍橙市場的需求量的頻率分布直方圖如圖所示.小王為下一個月購進(jìn)了100噸西鳳臍橙,以x(單位:噸)表示下一個月內(nèi)市場的需求量,y(單位:元)表示下一個月內(nèi)經(jīng)銷西鳳臍橙的銷售利潤.
![]()
(1)將y表示為x的函數(shù);
(2)根據(jù)頻率分布直方圖估計小王的網(wǎng)店下一個月銷售利潤y不少于67000元的概率;
(3)在直方圖的需求量分組中,以各組的區(qū)間中點值代表該組的各個值,需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點值的概率,(例如:若需求量
,則取
,且
的概率等于需求量落入
的頻率),求小王的網(wǎng)店下一個月銷售利潤y的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐
的底面
中,
∥
,
,
平面
,
是
的中點,且![]()
![]()
(1)求證:
∥平面
;
(2)求二面角
的余弦值;
(3)在線段
內(nèi)是否存在點
,使得
?若存在指出點
的位置,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
的導(dǎo)函數(shù)為
,且對任意的實數(shù)x都有
(e是自然對數(shù)的底數(shù)),且
,若關(guān)于x的不等式
的解集中恰有兩個整數(shù),則實數(shù)m的取值范圍是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,
底面
,底面
是直角梯形,
,
,
,點
在
上,且
.
![]()
(1)點
在
上,
,求證:
平面
;
(2)若直線
與平面
所成的角為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左、右焦點分別為
,離心率為
,
為橢圓上一動點(異于左右頂點),
面積的最大值為
.
(1)求橢圓
的方程;
(2)若直線
與橢圓
相交于點
兩點,問
軸上是否存在點
,使得
是以
為直角頂點的等腰直角三角形?若存在,求點
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)![]()
(1)
時,求過
的切線;
(2)討論函數(shù)
的單調(diào)性;
(3)
的零點個數(shù)少于
個,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在菱形
中,
,
為線段
的中點(如圖1).將
沿
折起到
的位置,使得平面
平面
,
為線段
的中點(如圖2).
![]()
(Ⅰ)求證:
;
(Ⅱ)求證:
平面
;
(Ⅲ)當(dāng)四棱錐
的體積為
時,求
的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com