設(shè)
,函數(shù)
,其中
是自然對(duì)數(shù)的底數(shù)。
(1)判斷
在R上的單調(diào)性;
(2)當(dāng)
時(shí),求
在
上的最值。
(1)當(dāng)
時(shí)
在R上是單調(diào)遞增函數(shù),當(dāng)
時(shí)在
上是單調(diào)遞增函數(shù),在
上是單調(diào)遞減函數(shù)(2)
,![]()
解析試題分析:(1)對(duì)
求導(dǎo),得
1分
設(shè)![]()
當(dāng)
時(shí),![]()
即
在R上是單調(diào)遞增函數(shù) 3分
當(dāng)
時(shí),
的兩根分別為![]()
且![]()
當(dāng)
時(shí),![]()
即![]()
當(dāng)
時(shí),![]()
即![]()
在
上是單調(diào)遞增函數(shù);
在
上是單調(diào)遞減函數(shù) 6分
(2)當(dāng)
時(shí),![]()
時(shí),
是單調(diào)遞增函數(shù) 10分
故
時(shí),![]()
12分
考點(diǎn):函數(shù)單調(diào)性與最值
點(diǎn)評(píng):當(dāng)函數(shù)解析式中有參數(shù)時(shí)要對(duì)參數(shù)分情況討論確定其單調(diào)性,函數(shù)在閉區(qū)間上的最值出在閉區(qū)間的端點(diǎn)或極值點(diǎn)處
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
![]()
.
(I)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若
,對(duì)
都有
成立,求實(shí)數(shù)
的取值范圍;
(Ⅲ)證明:
(
且
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)f(x)是(-∞,+∞)上的奇函數(shù),f(x+2)=-f(x),當(dāng)0≤x≤1時(shí),f(x)=x.
(1)求f(π)的值;
(2)當(dāng)-4≤x≤4時(shí),求f(x)的圖象與x軸所圍成圖形的面積;
(3)寫出(-∞,+∞)內(nèi)函數(shù)f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
,其中
為常數(shù).
(Ⅰ)當(dāng)
時(shí),判斷函數(shù)
在定義域上的單調(diào)性;
(Ⅱ)當(dāng)
時(shí),求
的極值點(diǎn)并判斷是極大值還是極小值;
(Ⅲ)求證對(duì)任意不小于3的正整數(shù)
,不等式
都成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知![]()
(1)求當(dāng)
時(shí),函數(shù)
的表達(dá)式;
(2)作出函數(shù)
的圖象,并指出其單調(diào)區(qū)間。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
,函數(shù)
的圖像在點(diǎn)
處的切線平行于
軸.
(1)求
的值;
(2)求函數(shù)
的極小值;
(3)設(shè)斜率為
的直線與函數(shù)
的圖象交于兩點(diǎn)
,(
)
證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
的圖像過坐標(biāo)原點(diǎn)
,且在點(diǎn)
處的切線的斜率是
.
(1)求實(shí)數(shù)
的值;
(2)求
在區(qū)間
上的最大值;
(3)對(duì)任意給定的正實(shí)數(shù)
,曲線
上是否存在兩點(diǎn)
,使得
是以
為
直角頂點(diǎn)的直角三角形,且此三角形斜邊的中點(diǎn)在軸上?請(qǐng)說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com