【題目】在直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程是
.
(1)求曲線
的直角坐標(biāo)方程;
(2)已知點(diǎn)
,若直線
與曲線
交于不同的兩點(diǎn)
,當(dāng)
最大時(shí),求出直線
的直角坐標(biāo)方程.
【答案】(1)
(2)![]()
【解析】
(1)將
,
代入曲線
可得直角坐標(biāo)方程;
(2)設(shè)A、B對應(yīng)的參數(shù)分別為
,
,把直線
的參數(shù)代入曲線
的直角坐標(biāo)方程,由聯(lián)立后的方程有兩解,可得
及
的取值范圍,同時(shí)可得
關(guān)于
的表達(dá)式,可得
的最大值及直線
的直角坐標(biāo)方程.
解:(1)把
代入曲線
的極坐標(biāo)方程可得直角坐標(biāo)方程為
;
(2)設(shè)A、B對應(yīng)的參數(shù)分別為
,
,
把直線
的參數(shù)代入曲線
的直角坐標(biāo)方程可得
,
因?yàn)橛袃蓚(gè)交點(diǎn),所以
,
解得
,
,
當(dāng)
時(shí),
最大,此時(shí)
,
所以直線
的直角坐標(biāo)方程為
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】德國數(shù)學(xué)家萊布尼茲(1646年-1716年)于1674年得到了第一個(gè)關(guān)于π的級數(shù)展開式,該公式于明朝初年傳入我國.在我國科技水平業(yè)已落后的情況下,我國數(shù)學(xué)家天文學(xué)家明安圖(1692年-1765年)為提高我國的數(shù)學(xué)研究水平,從乾隆初年(1736年)開始,歷時(shí)近30年,證明了包括這個(gè)公式在內(nèi)的三個(gè)公式,同時(shí)求得了展開三角函數(shù)和反三角函數(shù)的6個(gè)新級數(shù)公式,著有《割圓密率捷法》一書,為我國用級數(shù)計(jì)算π開創(chuàng)了先河.如圖所示的程序框圖可以用萊布尼茲“關(guān)于π的級數(shù)展開式”計(jì)算π的近似值(其中P表示π的近似值),若輸入
,則輸出的結(jié)果是( )
![]()
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修 4-4]參數(shù)方程與極坐標(biāo)系
在平面直角坐標(biāo)系
中,已知曲線
:
,以平面直角坐標(biāo)系
的原點(diǎn)
為極點(diǎn),
軸正半軸為極軸,取相同的單位長度建立極坐標(biāo)系.已知直線
:
.
(Ⅰ)試寫出直線
的直角坐標(biāo)方程和曲線
的參數(shù)方程;
(Ⅱ)在曲線
上求一點(diǎn)
,使點(diǎn)
到直線
的距離最大,并求出此最大值.
[選修 4-5]不等式選講
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)的產(chǎn)品中分正品與次品,正品重
,次品重
,現(xiàn)有5袋產(chǎn)品(每袋裝有10個(gè)產(chǎn)品),已知其中有且只有一袋次品(10個(gè)產(chǎn)品均為次品)如果將5袋產(chǎn)品以1~5編號,第
袋取出
個(gè)產(chǎn)品(
),并將取出的產(chǎn)品一起用秤(可以稱出物體重量的工具)稱出其重量
,若次品所在的袋子的編號是2,此時(shí)的重量
_________
;若次品所在的袋子的編號是
,此時(shí)的重量
_______
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(13分)編號為A1,A2,…,A16的16名籃球運(yùn)動員在某次訓(xùn)練比賽中的得分記錄如下:
運(yùn)動員編號 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | |
得分 | 15 | 35 | 21 | 28 | 25 | 36 | 18 | 34 | |
運(yùn)動員編號 | A9 | A10 | A11 | A12 | A13 | A14 | A15 | A16 | |
得分 | 17 | 26 | 25 | 33 | 22 | 12 | 31 | 38 |
(Ⅰ)將得分在對應(yīng)區(qū)間內(nèi)的人數(shù)填入相應(yīng)的空格;
區(qū)間 | [10,20) | [20,30) | [30,40] |
人數(shù) |
(Ⅱ)從得分在區(qū)間[20,30)內(nèi)的運(yùn)動員中隨機(jī)抽取2人,
(i)用運(yùn)動員的編號列出所有可能的抽取結(jié)果;
(ii)求這2人得分之和大于50分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】奇函數(shù)f(x)在R上存在導(dǎo)數(shù)
,當(dāng)x<0時(shí),![]()
f(x),則使得(x2﹣1)f(x)<0成立的x的取值范圍為( )
A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(0,1)
C.(﹣1,0)∪(1,+∞)D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓周率是圓的周長與直徑的比值,一般用希臘字母
表示.早在公元480年左右,南北朝時(shí)期的數(shù)學(xué)家祖沖之就得出精確到小數(shù)點(diǎn)后7位的結(jié)果,他是世界上第一個(gè)把圓周率的數(shù)值計(jì)算到小數(shù)點(diǎn)后第7位的人,這比歐洲早了約1000年.生活中,我們也可以通過如下隨機(jī)模擬試驗(yàn)來估計(jì)
的值:在區(qū)間
內(nèi)隨機(jī)取
個(gè)數(shù),構(gòu)成
個(gè)數(shù)對
,設(shè)
,
能與1構(gòu)成鈍角三角形三邊的數(shù)對
有
對,則通過隨機(jī)模擬的方法得到的
的近似值為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)若
在點(diǎn)
處的切線與直線
垂直,求函數(shù)
在
點(diǎn)處的切線方程;
(2)若對于
,
恒成立,求正實(shí)數(shù)
的取值范圍;
(3)設(shè)函數(shù)
,且函數(shù)
有極大值點(diǎn)
,求證:
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com