【題目】某公司2016年前三個(gè)月的利潤(單位:百萬元)如下:
月份 |
|
|
|
利潤 |
|
|
|
(1)求利潤
關(guān)于月份
的線性回歸方程;
(2)試用(1)中求得的回歸方程預(yù)測
月和
月的利潤;
(3)試用(1)中求得的回歸方程預(yù)測該公司2016年從幾月份開始利潤超過
萬?
相關(guān)公式:
,
=
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|-1≤x≤2},B={x|m-1≤x≤2m+1},已知BA.
(1)當(dāng)x∈N時(shí),求集合A的子集的個(gè)數(shù);
(2)求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
.
(1)若
是函數(shù)
的極值點(diǎn),1和
是函數(shù)
的兩個(gè)不同零點(diǎn),且
,求
.
(2)若對(duì)任意
,都存在
(
為自然對(duì)數(shù)的底數(shù)),使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)生在開學(xué)季準(zhǔn)備銷售一種文具盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開學(xué)季內(nèi),每售出1盒該產(chǎn)品獲利潤50元,未售出的產(chǎn)品,每盒虧損30元.根據(jù)歷史資料,得到開學(xué)季市場需求量的頻率分布直方圖,如圖所示.該同學(xué)為這個(gè)開學(xué)季購進(jìn)了160盒該產(chǎn)品,以
(單位:盒,
)表示這個(gè)開學(xué)季內(nèi)的市場需求量,
(單位:元)表示這個(gè)開學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤.
![]()
(I)根據(jù)直方圖估計(jì)這個(gè)開學(xué)季內(nèi)市場需求量
的眾數(shù)和中位數(shù);
(II)將
表示為
的函數(shù);
(III)根據(jù)直方圖估計(jì)利潤
不少于4800元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)已知函數(shù)
(
)的最小正周
期為
,
(Ⅰ)求
的值;
(Ⅱ)將函數(shù)
的圖像上各點(diǎn)的橫坐標(biāo)縮短到原來的
,縱坐標(biāo)不變,得到函數(shù)![]()
的圖像,求函數(shù)
在區(qū)間
上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
經(jīng)過點(diǎn)
,圓
的圓心在圓
的內(nèi)部,且直線
被圓
所截得的弦長為
.點(diǎn)
為圓
上異于
的任意一點(diǎn),直線
與
軸交于點(diǎn)
,直線
與
軸交于點(diǎn)
.
(1)求圓
的方程;
(2)求證:
為定值;
(3)當(dāng)
取得最大值時(shí),求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國“一帶一路”戰(zhàn)略構(gòu)思提出后, 某科技企業(yè)為抓住“一帶一路”帶來的機(jī)遇, 決定開發(fā)生產(chǎn)一款大型電子設(shè)備, 生產(chǎn)這種設(shè)備的年固定成本為
萬元, 每生產(chǎn)
臺(tái),需另投入成本
(萬元), 當(dāng)年產(chǎn)量不足
臺(tái)時(shí),
(萬元); 當(dāng)年產(chǎn)量不小于
臺(tái)時(shí)
(萬元), 若每臺(tái)設(shè)備售價(jià)為
萬元, 通過市場分析,該企業(yè)生產(chǎn)的電子設(shè)備能全部售完.
(1)求年利潤
(萬元)關(guān)于年產(chǎn)量
(臺(tái))的函數(shù)關(guān)系式;
(2)年產(chǎn)量為多少臺(tái)時(shí) ,該企業(yè)在這一電子設(shè)備的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)橢圓的中心為原點(diǎn)
,長軸在
軸上,上頂點(diǎn)為
,左、右焦點(diǎn)分別為
,線段
的中點(diǎn)分別為
,且
是面積為
的直角三角形.
![]()
(1)求該橢圓的離心率和標(biāo)準(zhǔn)方程;
(2)過
作直線交橢圓于
兩點(diǎn),使
,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的焦距為2,左、右頂點(diǎn)分別為
,
是橢圓上一點(diǎn),記直線
的斜率為
,且有
.
(1)求橢圓
的方程;
(2)若直線
與橢圓
交于
兩點(diǎn),以
為直徑的圓經(jīng)過原點(diǎn),且線段
的垂直平分線在
軸上的截距為
,求直線
的方程.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com