【題目】已知函數(shù)![]()
(1)若
在
處取得極值,求
的值;
(2)討論
的單調(diào)性;
(3)證明:
為自然對(duì)數(shù)的底數(shù)).
【答案】(1)
;(2)若
上單調(diào)遞減,若![]()
![]()
和
上單調(diào)遞減,若
,在
上單調(diào)遞增,在
單調(diào)遞減;(3)證明見(jiàn)解析.
【解析】
試題分析:(1)求極值,只要求得
,然后解方程
,注意驗(yàn)證此方程解的兩邊導(dǎo)數(shù)的正負(fù),可得極值點(diǎn),相應(yīng)得到
值;(2)主要研究導(dǎo)函數(shù)
的正負(fù),
,因此只要考慮
,先討論
,然后研究
,在
時(shí),分類
,在
時(shí)不要注意兩根的大小,正確分類后可得結(jié)論;(3)要證明不等式,聯(lián)想(2)的結(jié)論,在(2)中令
,得
,即
,因此
,再取
,所得相加可證題設(shè)不等式.
試題解析:(1)
是
的一個(gè)極值點(diǎn),則
,驗(yàn)證知
=0符合條件
(2)![]()
1)若
=0時(shí),
單調(diào)遞增,在
單調(diào)遞減;
2)若![]()
上單調(diào)遞減
3)若![]()
![]()
再令![]()
![]()
![]()
在![]()
綜上所述,若
上單調(diào)遞減,
若![]()
![]()
。
若![]()
(3)由(2)知,當(dāng)![]()
當(dāng)![]()
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】解決某個(gè)問(wèn)題的算法如下:
第一步,給定一個(gè)實(shí)數(shù)n(n≥2).
第二步,判斷n是否是2,若n=2,則n滿足條件;若n>2,則執(zhí)行第三步.
第三步,依次從2到n-1檢驗(yàn)?zāi)懿荒苷?/span>n,若都不能整除n,則n滿足條件.
則滿足上述條件的實(shí)數(shù)n是( )
A.質(zhì)數(shù) B.奇數(shù)
C.偶數(shù) D.約數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的個(gè)數(shù)是( )
①若直線l與平面α內(nèi)的一條直線垂直,則l⊥α;
②若直線l與平面α內(nèi)的兩條直線垂直,則l⊥α
③若直線l與平面α內(nèi)的兩條相交直線垂直,則l⊥α;
④若直線l與平面α內(nèi)的任意一條直線垂直,則l⊥α.
A.4
B.2
C.3
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)![]()
(1)當(dāng)
=1時(shí),求函數(shù)在區(qū)間[-2,3]上的值域;
(2)函數(shù)
在
上具有單調(diào)性,求實(shí)數(shù)
的取值范圍;
(3)求函數(shù)
在
上的最小值
的解析式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中,圓C的參數(shù)方程為
,(t為參數(shù)),在以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線
的極坐標(biāo)方程為
,A,B兩點(diǎn)的極坐標(biāo)分別為
.
(1)求圓C的普通方程和直線
的直角坐標(biāo)方程;
(2)點(diǎn)P是圓C上任一點(diǎn),求△PAB面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)某廠產(chǎn)品的次品率為2%,估算該廠8 000件產(chǎn)品中合格品的件數(shù)大約為( )
A. 160 B. 7 840
C. 7 998 D. 7 800
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】梯形ABCD中,AB∥CD,AB平面α,CD平面α,則直線CD與平面α內(nèi)的直線的位置關(guān)系只能是( )
A.平行
B.平行或異面
C.平行或相交
D.異面或相交
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在
上的函數(shù)
,如果滿足:對(duì)任意
,存在常數(shù)
,都有
成立,則稱
是
上的有界函數(shù),其中
稱為函數(shù)
的上界.已知函數(shù)
,
.
(1)當(dāng)
時(shí),求函數(shù)
在
上的值域,并判斷函數(shù)
在
上是否為有界函數(shù),請(qǐng)說(shuō)明理由;
(2)①當(dāng)
時(shí),判斷函數(shù)
的奇偶性并證明,并判斷
是否有上界,并說(shuō)明理由;
②若
,函數(shù)
在
上的上界是
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在對(duì)人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人,女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運(yùn)動(dòng),男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運(yùn)動(dòng).
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)
的列聯(lián)表;
(2)是否有97.5%的把握認(rèn)為性別與休閑方式有關(guān)系?
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com