【題目】已知頂點為原點的拋物線C的焦點與橢圓
的上焦點重合,且過點
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若拋物線上不同兩點A,B作拋物線的切線,兩切線的斜率
,若記AB的中點的橫坐標(biāo)為m,AB的弦長
,并求
的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地擬建造一座體育館,其設(shè)計方案側(cè)面的外輪廓線如圖所示:曲線
是以點
為圓心的圓的一部分,其中![]()
,
是圓的切線,且
,曲線
是拋物線![]()
的一部分,
,且
恰好等于圓
的半徑.
![]()
(1)若
米,
米,求
與
的值;
(2)若體育館側(cè)面的最大寬度
不超過75米,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
九章算術(shù)
中對一些特殊的幾何體有特定的稱謂,例如:將底面為直角三角形的直三棱柱稱為塹堵,將一塹堵沿其一頂點與相對的棱刨開,得到一個陽馬
底面是長方形,且有一條側(cè)棱與底面垂直的四棱錐
和一個鱉臑
四個面均為直角三角形的四面體
在如圖所示的塹堵
中,已知
,若陽馬
的外接球的表面積等于
,則鱉臑
的所有棱中,最長的棱的棱長為( )
![]()
A.5B.
C.
D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:極坐標(biāo)與參數(shù)方程
已知在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點,曲線C:
(α為參數(shù)),在以平面直角坐標(biāo)系的原點為極點,x軸的正半軸為極軸,取相同單位長度的極坐標(biāo)系,直線l:ρ
.
(Ⅰ)求曲線C的普通方程和直線l的直角坐標(biāo)方程;
(Ⅱ)曲線C上恰好存在三個不同的點到直線l的距離相等,分別求出這三個點的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“一帶一路”近年來成為了百姓耳熟能詳?shù)臒衢T詞匯,對于旅游業(yè)來說,“一帶一路”戰(zhàn)略的提出,讓“絲路之旅”超越了旅游產(chǎn)品、旅游線路的簡單范疇,賦予了旅游促進(jìn)跨區(qū)域融合的新理念. 而其帶來的設(shè)施互通、經(jīng)濟(jì)合作、人員往來、文化交融更是將為相關(guān)區(qū)域旅游發(fā)展帶來巨大的發(fā)展機(jī)遇.為此,旅游企業(yè)們積極拓展相關(guān)線路;各地旅游主管部門也在大力打造絲路特色旅游品牌和服務(wù).某市旅游局為了解游客的情況,以便制定相應(yīng)的策略. 在某月中隨機(jī)抽取甲、乙兩個景點10天的游客數(shù),統(tǒng)計得到莖葉圖如下:
![]()
(1)若將圖中景點甲中的數(shù)據(jù)作為該景點較長一段時期內(nèi)的樣本數(shù)據(jù),以每天游客人數(shù)頻率作為概率.今從這段時期內(nèi)任取4天,記其中游客數(shù)超過130人的天數(shù)為
,求概率
;
(2)現(xiàn)從上圖20天的數(shù)據(jù)中任取2天的數(shù)據(jù)(甲、乙兩景點中各取1天),記其中游客數(shù)不低于125且不高于135人的天數(shù)為
,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
,
,…,
是由
(
)個整數(shù)
,
,…,
按任意次序排列而成的數(shù)列,數(shù)列
滿足
(
).
(1)當(dāng)
時,寫出數(shù)列
和
,使得
.
(2)證明:當(dāng)
為正偶數(shù)時,不存在滿足
(
)的數(shù)列
.
(3)若
,
,…,
是
,
,…,
按從大到小的順序排列而成的數(shù)列,寫出
(
),并用含
的式子表示
.
(參考:
.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知菱形
中,
,
與
相交于點
,將
沿
折起,使頂點
至點
,在折起的過程中,下列結(jié)論正確的是( )
A.
B.存在一個位置,使
為等邊三角形
C.
與
不可能垂直D.直線
與平面
所成的角的最大值為![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩動圓
和
(
),把它們的公共點的軌跡記為曲線
,若曲線
與
軸的正半軸的交點為
,且曲線
上的相異兩點
滿足:
.
(1)求曲線
的軌跡方程;
(2)證明直線
恒經(jīng)過一定點,并求此定點的坐標(biāo);
(3)求
面積
的最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com