【題目】已知函數(shù)
的導(dǎo)函數(shù)為
,且對任意的實(shí)數(shù)
都有
(
是自然對數(shù)的底數(shù)),且
,若關(guān)于
的不等式
的解集中恰有兩個(gè)負(fù)整數(shù),則實(shí)數(shù)
的取值范圍是( )
A.
B.
C.
D. ![]()
【答案】C
【解析】
首先求得函數(shù)的解析式,然后結(jié)合函數(shù)的單調(diào)性和函數(shù)的解析式確定函數(shù)的性質(zhì),最后結(jié)合題意求解實(shí)數(shù)
的取值范圍即可.
,則
,
兩側(cè)積分可得:
,其中
為常數(shù),
令
,結(jié)合題意可得:
,
即函數(shù)的解析式為
,
據(jù)此有:
,
令
,解得x=l或x=-2,
當(dāng)x<-2或x>1時(shí),f(x)<0,函數(shù)f(x)單調(diào)遞減,
當(dāng)-2<x<1時(shí),f(x)>0,函數(shù)f(x)單調(diào)遞減增,
可得:x=1時(shí),函數(shù)f(x)取得極大值,x=-2時(shí),函數(shù)f(x)取得極小值,
且
,
,
,
,
,
繪制函數(shù)圖像如圖所示,
觀察可得:-e<m≤0時(shí),f(x)-m<0的解集中恰有兩個(gè)負(fù)整數(shù)-1,-2.
故m的取值范圍是(-e,0].
本題選擇C選項(xiàng).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
(
)的左焦點(diǎn)為
,左準(zhǔn)線方程為
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)已知直線
交橢圓
于
,
兩點(diǎn).
①若直線
經(jīng)過橢圓
的左焦點(diǎn)
,交
軸于點(diǎn)
,且滿足
,
.求證:
為定值;
②若
(
為原點(diǎn)),求
面積的取值范圍.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2﹣4x=0.
(1)直線l的方程為
,直線l交圓C于A、B兩點(diǎn),求弦長|AB|的值;
(2)從圓C外一點(diǎn)P(4,4)引圓C的切線,求此切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】水培植物需要一種植物專用營養(yǎng)液,已知每投放
且
個(gè)單位的營養(yǎng)液,它在水中釋放的濃度
(克/升)隨著時(shí)間
(天)變化的函數(shù)關(guān)系式近似為
,其中
,若多次投放,則某一時(shí)刻水中的營養(yǎng)液濃度為每次投放的營養(yǎng)液在相應(yīng)時(shí)刻所釋放的濃度之和,根據(jù)經(jīng)驗(yàn),當(dāng)水中營養(yǎng)液的濃度不低于4(克/升)時(shí),它才能有效.
(1)若只投放一次2個(gè)單位的營養(yǎng)液,則有效時(shí)間最多可能持續(xù)幾天?
(2)若先投放2個(gè)單位的營養(yǎng)液,4天后再投放b個(gè)單位的營養(yǎng)液,要使接下來的2天中,營養(yǎng)液能夠持續(xù)有效,試求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的不等式組
的解集為A,若集合A中有且僅有一個(gè)整數(shù),求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,(
為常數(shù)),
.曲線
在點(diǎn)
處的切線與
軸平行
(1)求
的值;
(2)求
的單調(diào)區(qū)間和最小值;
(3)若
對任意
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時(shí),多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”.利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”.小華同學(xué)利用劉徽的“割圓術(shù)”思想在半徑為1的圓內(nèi)作正
邊形求其面積,如圖是其設(shè)計(jì)的一個(gè)程序框圖,則框圖中應(yīng)填入、輸出
的值分別為( )
(參考數(shù)據(jù):
)
![]()
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M的方程為x2+y2-2x-2y-6=0,以坐標(biāo)原點(diǎn)O為圓心的圓O與圓M相切.
(1)求圓O的方程;
(2)圓O與x軸交于E,F兩點(diǎn),圓O內(nèi)的動(dòng)點(diǎn)D使得DE,DO,DF成等比數(shù)列,求![]()
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓C:
(a>b>0)的左、右焦點(diǎn)分別為F1、F2,若橢圓C經(jīng)過點(diǎn)(0,
),離心率為
,直線l過點(diǎn)F2與橢圓C交于A、B兩點(diǎn).
(1)求橢圓C的方程;
(2)若點(diǎn)N為△F1AF2的內(nèi)心(三角形三條內(nèi)角平分線的交點(diǎn)),求△F1NF2與△F1AF2面積的比值;
(3)設(shè)點(diǎn)A,F(xiàn)2,B在直線x=4上的射影依次為點(diǎn)D,G, E.連結(jié)AE,BD,試問當(dāng)直線l的傾斜角變化時(shí),直線AE與BD是否相交于定點(diǎn)T?若是,請求出定點(diǎn)T的坐標(biāo);若不是,請說明理由.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com