【題目】《漢字聽寫大會》不斷創(chuàng)收視新高,為了避免“書寫危機(jī)”,弘揚傳統(tǒng)文化,某市大約10萬名市民進(jìn)行了漢字聽寫測試.現(xiàn)從某社區(qū)居民中隨機(jī)抽取50名市民的聽寫測試情況.發(fā)現(xiàn)被測試市民正確書寫漢字的個數(shù)全部在160到184之間,將測試結(jié)果按如下方式分成六組:第1組
,第2組
,…,第6組
,如圖是按上述分組方法得到的頻率分布直方圖.
![]()
(1)試估計該市市民正確書寫漢字的個數(shù)的平均數(shù)與中位數(shù);
(2)已知第4組市民中有3名男性,組織方要從第4組中隨機(jī)抽取2名市民組成弘揚傳統(tǒng)文化宣傳隊,求至少有1名女性市民的概率.
【答案】(1)168.56,168.25;(2)
.
【解析】
(1)由頻率分布直方圖求出均值,把頻率平分的那一點對應(yīng)值為中位數(shù).
(2)6人中3男3女,編號后用列舉法列出任取2名的所有可能情形,并計算出全是男性的方法數(shù),從而根據(jù)對立事件的概率公式可計算出至少有1名女性的概率.
(1)平均數(shù)![]()
![]()
設(shè)中位數(shù)為x,則![]()
∴中位數(shù)
.
(2)共
人,其中男生3人,設(shè)為
,女生三人,設(shè)為![]()
則任選2人,可能為
,
,共15種,
其中兩個全是男生的有
,共3種情況
設(shè)事件A:至少有1名女性,
則至少有1名女性市民的概率![]()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C1與雙曲線C2有相同的左右焦點F1,F2,P為橢圓C1與雙曲線C2在第一象限內(nèi)的一個公共點,設(shè)橢圓C1與雙曲線C2的離心率分別為e1,e2,且
=
,若∠F1PF2=
,則雙曲線C2的漸近線方程為( )
A. x±y=0 B. x±
y=0
C. x±
y=0 D. x±2y=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:若函數(shù)
的定義域為
,且存在非零常數(shù)
,對任意
,
恒成立,則稱
為線周期函數(shù),
為
的線周期.
(1)下列函數(shù)①
,②
,③
(其中
表示不超過x的最大整數(shù)),是線周期函數(shù)的是 (直接填寫序號);
(2)若
為線周期函數(shù),其線周期為
,求證:
為周期函數(shù);
(3)若
為線周期函數(shù),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從高二年級學(xué)生中隨機(jī)抽取100名學(xué)生,將他們某次考試的數(shù)學(xué)成績(均為整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到頻率分布直方圖(如圖所示),
![]()
(1)求分?jǐn)?shù)在[70,80)中的人數(shù);
(2)若用分層抽樣的方法從分?jǐn)?shù)在[40,50)和[50,60)的學(xué)生中共抽取5 人,該5 人中成績在[40,50)的有幾人?
(3)在(2)中抽取的5人中,隨機(jī)選取2 人,求分?jǐn)?shù)在[40,50)和[50,60)各1 人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的方程為
,雙曲線
的一條漸近線與
軸所成的夾角為
,且雙曲線的焦距為
.
![]()
(1)求橢圓
的方程;
(2)設(shè)
分別為橢圓
的左,右焦點,過
作直線
(與
軸不重合)交橢圓于
,
兩點,線段
的中點為
,記直線
的斜率為
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐
中,平面
平面
,
為等邊三角形,
且
,
,
分別為
,
的中點.
![]()
(1)求證:
平面
;
(2)求證:平面
平面
;
(3)求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】實數(shù)a,b滿足ab>0且a≠b,由a、b、
、
按一定順序構(gòu)成的數(shù)列( 。
A. 可能是等差數(shù)列,也可能是等比數(shù)列
B. 可能是等差數(shù)列,但不可能是等比數(shù)列
C. 不可能是等差數(shù)列,但可能是等比數(shù)列
D. 不可能是等差數(shù)列,也不可能是等比數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
過點
,且焦點為F,直線l與拋物線相交于A,B兩點.
⑴求拋物線C的方程,并求其準(zhǔn)線方程;
⑵
為坐標(biāo)原點.若
,證明直線l必過一定點,并求出該定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C對應(yīng)的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1.
(1)求角A的大。
(2)若△ABC的面積S=5
,b=5,求sinBsinC的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com