已知函數(shù)
.
(1)若
的定義域和值域均是
,求實數(shù)
的值;
(2)若
在區(qū)間
上是減函數(shù),且對任意的
,
,總有
,求實數(shù)
的取值范圍.
(1)
;(2)
的取值范圍是
.
解析試題分析:(1)根據(jù)條件
,可知
為二次函數(shù),其對稱軸為
,因此
在
上是減函數(shù),故根據(jù)條件
的定義域和值域均是
,可列出關(guān)于
的方程組
,將
具體的表達(dá)式代入,即可求得
;(2)首先根據(jù)條件可知
,再由問題的描述,可將問題等價轉(zhuǎn)化為求使對任意的
,
,總有
成立的
的取值范圍,又由條件,二次函數(shù)
的對稱軸
,且左右端點(diǎn)
對于對稱軸
的偏離距離
,故有
,
,因此可以建立關(guān)于
的不等式,從而求得
的取值范圍是
.
試題解析:(1)∵
,∴
在
上是減函數(shù) 2分,
又定義域和值域均為
,∴
, 4分
即
,解得
. 5分;
(2)∵
在區(qū)間
上是減函數(shù),∴
, 7分
又
,且
,
∴
,
. 10分
∵對任意的
,
,總有
,
∴
, 12分
即
,解得
,
又∵
,∴
,
的取值范圍是
.
考點(diǎn):1.二次函數(shù)的值域;2.二次函數(shù)與恒成立問題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)二次函數(shù)
.
(1)求函數(shù)
的最小值;
(2)問是否存在這樣的正數(shù)
,當(dāng)
時,
,且
的值域為
?若存在,求出所有的
的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
銷售甲、乙兩種商品所得利潤分別為P(單位:萬元)和Q(單位:萬元),它們與投入資金
(單位:萬元)的關(guān)系有經(jīng)驗公式
,
. 今將3萬元資金投入經(jīng)營甲、乙兩種商品,其中對甲種商品投資
(單位:萬元)
(1)試建立總利潤
(單位:萬元)關(guān)于
的函數(shù)關(guān)系式,并指明函數(shù)定義域;
(2)如何投資經(jīng)營甲、乙兩種商品,才能使得總利潤最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,制圖工程師要用兩個同中心的邊長均為4的正方形合成一個八角形圖形.由對稱性,圖中8個三角形都是全等的三角形,設(shè)
.![]()
(1)試用
表示
的面積;
(2)求八角形所覆蓋面積的最大值,并指出此時
的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
是定義在
上的奇函數(shù),且
,若
,
有
恒成立.
(1)判斷
在
上是增函數(shù)還是減函數(shù),并證明你的結(jié)論;
(2)若
對所有
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
為了降低能源損耗,某體育館的外墻需要建造隔熱層.體育館要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度
(單位:cm)滿足關(guān)系:
(
,
為常數(shù)),若不建隔熱層,每年能源消耗費(fèi)用為8萬元.設(shè)
為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(1)求
的值及
的表達(dá)式;
(2)隔熱層修建多厚時,總費(fèi)用
達(dá)到最?并求出最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com