分析 (1)分類討論,利用不等式f(x)+a≥0恒成立,即f(x)的最小值|a-2|≥-a求實數(shù)a的取值范圍;
(2)利用柯西不等式得,(a+b+c)2≤(12+12+12)(a2+b2+c2)=3,即可證明結論.
解答 解:(1)當a≥0時,f(x)+a≥0恒成立,
當a<0時,要保證f(x)≥-a恒成立,即f(x)的最小值|a-2|≥-a,解得a≥-1,∴0>a≥-1
綜上所述,a≥-1.(5分)
(2)由柯西不等式得,(a+b+c)2≤(12+12+12)(a2+b2+c2)=3
所以-$\sqrt{3}$≤a+b+c≤$\sqrt{3}$
所以:a+b+c≤$\sqrt{3}$.(10分)
點評 本小題主要考查不等式的相關知識,考查柯西不等式,具體涉及到絕對值不等式及不等式證明等內容.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | -$\frac{4}{3}$ | B. | -$\frac{3}{4}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 2 | B. | $\frac{1}{2}$ | C. | -2 | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com