【題目】橢圓的兩個焦點坐標分別為F1(-
,0)和F2(
,0),且橢圓過點![]()
(1)求橢圓方程;
(2)過點
作不與y軸垂直的直線l交該橢圓于M,N兩點,A為橢圓的左頂點,證明
.
【答案】(1)
(2)見解析
【解析】
(1)設橢圓方程為
,由題設代入點的坐標,求得
,即可得到橢圓的方程;
(2)設直線的方程
,聯(lián)立方程組,利用根與系數(shù)的關系,得到
,再由向量的數(shù)量積的運算求得
,即可得到答案.
解:(1)設橢圓方程為
,
由
,橢圓過點
可得
,
解得
所以可得橢圓方程為
.
(2)由題意可設直線MN的方程為:
,
聯(lián)立直線MN和橢圓的方程:
化簡得(k2+4)y2-
ky-
=0.
設M(x1,y1),N(x2,y2),
則y1y2=
,y1+y2=![]()
又A(-2,0),則
=(x1+2,y1)·(x2+2,y2)=(k2+1)y1y2+
k(y1+y2)+
=0,
所以
.
科目:高中數(shù)學 來源: 題型:
【題目】已知向量
=(cosx+sinx,2sinx),
=(cosx﹣sinx,cosx).令f(x)=
.
(1)求f(x)的最小正周期;
(2)求f(x)在[
,
]上的單調遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2sinxcosx+2
cos2x﹣ ![]()
(1)求函數(shù)f(x)的最小正周期和單調減區(qū)間;
(2)已知△ABC的三個內角A,B,C的對邊分別為a,b,c,其中a=7,若銳角A滿足f(
﹣
)=
,且sinB+sinC=
,求bc的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列{an}滿足an+1=an(1﹣an+1),a1=1,數(shù)列{bn}滿足:bn=anan+1 , 則數(shù)列{bn}的前10項和S10= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知遞增等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2和a4的等差中項,
(1)求數(shù)列{an}的通項公式;
(2)若
,Sn=b1+b2+…+bn , 求使Sn+n2n+1>62成立的正整數(shù)n的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=ax3﹣3x2+1(a>0),定義h(x)=max{f(x),g(x)}=
.
(1)求函數(shù)f(x)的極值;
(2)若g(x)=xf'(x),且存在x∈[1,2]使h(x)=f(x),求實數(shù)a的取值范圍;
(3)若g(x)=lnx,試討論函數(shù)h(x)(x>0)的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓
.
(Ⅰ)若圓
的切線在
軸和
軸上的截距相等,求此切線的方程;
(Ⅱ)從圓
外一點
向該圓引一條切線,切點為
,
為坐標原點,且
,求使
取得最小值的點
的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知兩點M(﹣3,0),N(3,0),點P為坐標平面內一動點,且
,則動點P(x,y)到兩點A(﹣3,0)、B(﹣2,3)的距離之和的最小值為( 。
A. 4 B. 5 C. 6 D. ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設S為復數(shù)集C的非空子集.如果
(1)S含有一個不等于0的數(shù);
(2)a,b∈S,a+b,a﹣b,ab∈S;
(3)a,b∈S,且b≠0,
∈S,那么就稱S是一個數(shù)域.
現(xiàn)有如下命題:
①如果S是一個數(shù)域,則0,1∈S;
②如果S是一個數(shù)域,那么S含有無限多個數(shù);
③復數(shù)集是數(shù)域;
④S={a+b
|a,b∈Q,}是數(shù)域;
⑤S={a+bi|a,b∈Z}是數(shù)域.
其中是真命題的有 (寫出所有真命題的序號).
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com