已知某幾何體的正視圖和側(cè)視圖是全等的等腰梯形,俯視圖是兩個(gè)同心圓,如圖所示,則該幾何體的全面積為________.
![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
雙曲線
-
=-1(b>0,a>0)與拋物線y=
x2有一個(gè)公共焦點(diǎn)F,雙曲線的過點(diǎn)F且垂直于y軸的弦長為
,則雙曲線的離心率等于( )
A.2 B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若拋物線y2=4x的焦點(diǎn)為F,過F且斜率為1的直線交拋物線于A、B兩點(diǎn),動(dòng)點(diǎn)P在曲線y2=-4x(y≥0)上,則△PAB的面積的最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若F1,F2是橢圓
+
=1(a>2b>0)的兩個(gè)焦點(diǎn),分別過F1,F2作傾斜角為45°的兩條直線與橢圓相交于四點(diǎn),以該四點(diǎn)為頂點(diǎn)的四邊形和以橢圓的四個(gè)頂點(diǎn)為頂點(diǎn)的四邊形的面積比等于
,則該橢圓的離心率為( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,若一個(gè)空間幾何體的三視圖中,正視圖和側(cè)視圖都是直角三角形,其直角邊長均為1,則該幾何體的表面積為( )
![]()
A.1+
B.2+2![]()
C.
D.2+![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在如圖所示的幾何體中,四邊形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分別為MB、PB、PC的中點(diǎn),且AD=PD=2MA.
![]()
(1)求證:平面EFG⊥平面PDC;
(2)求三棱錐P-MAB與四棱錐P-ABCD的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知四棱錐P-ABCD的正視圖是一個(gè)底邊長為4、腰長為3的等腰三角形,如圖分別是四棱錐P-ABCD的側(cè)視圖和俯視圖.
![]()
(1)求證:AD⊥PC;
(2)求四棱錐P-ABCD的側(cè)面PAB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
.如圖,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中點(diǎn).
![]()
(1)求證:AF∥平面BCE;
(2)求證:平面BCE⊥平面CDE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知三棱錐P-ABC的各頂點(diǎn)均在一個(gè)半徑為R的球面上,球心O在AB上,PO⊥平面ABC,
=
,則三棱錐與球的體積之比為________.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com