【題目】函數(shù)f(x)=lnx﹣ax2+x有兩個零點,則實數(shù)a的取值范圍是( )
A.(0,1)
B.(﹣∞,1)
C.(﹣∞,
)
D.(0,
)
【答案】A
【解析】解:∵函數(shù)f(x)=lnx﹣ax2+x有兩個不同的零點, 不妨令g(x)=lnx,h(x)=ax2﹣x,
將零點問題轉(zhuǎn)化為兩個函數(shù)交點的問題;
又函數(shù)h(x)=x(ax﹣1),
當(dāng)a≤0時,g(x)和h(x)只有一個交點,不滿足題意;
當(dāng)a>0時,由lnx﹣ax2+x=0,得a=
;
令r(x)=
,則r′(x)=
=
,
當(dāng)0<x<1時,r'(x)>0,r(x)是單調(diào)增函數(shù),
當(dāng)x>1時,r'(x)<0,r(x)是單調(diào)減函數(shù),且
>0,∴0<a<1;
或當(dāng)a>0時,作出兩函數(shù)g(x)=lnx,h(x)=ax2﹣x的圖象,如圖所示; ![]()
g(x)=lnx交x軸于點(1,0),
h(x)=ax2﹣x交x軸于點(0,0)和點(
,0);
要使方程有兩個零點,應(yīng)滿足兩函數(shù)有兩個交點,
即
>1,解得0<a<1;
∴a的取值范圍是(0,1).
故選:A.
函數(shù)f(x)=lnx﹣ax2+x有兩個不同的零點,轉(zhuǎn)化為函數(shù)g(x)=lnx和h(x)=ax2﹣x交點的問題;
討論a≤0時不滿足題意,a>0時,求得(a)max=1,當(dāng)x→+∞時,a→0,從而可得答案.
或a>0時,作出兩函數(shù)g(x)=lnx,h(x)=ax2﹣x的圖象,由
>1求出a的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
與直線
,且直線
有唯一的一個點
,使得過
點作圓
的兩條切線互相垂直,則
_____;設(shè)
是直線
上的一條線段,若對于圓
上的任意一點
,則
的最小值_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
,直線![]()
(1)求證:不論
取何實數(shù),直線
與圓
總有兩個不同的交點;
(2)設(shè)直線
與圓
交于點
,當(dāng)
時,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD是邊長為2的菱形,∠ABC=60°,PA⊥PB,PC=2. ![]()
(1)求證:平面PAB⊥平面ABCD;
(2)若PA=PB,求二面角A﹣PC﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱錐
中,
為
中點,
為
中點,且
為正三角形.
(I)求證:
平面
;
(II)求證:平面
平面
;
(III)若
,求三棱錐
的體積.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求適合下列條件的圓錐曲線的標(biāo)準(zhǔn)方程:
(1)拋物線的焦點是橢圓
的上頂點;
(2)橢圓的焦距是8,離心率等于
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量
=(cosθ,sinθ),
=(﹣
,
);
(1)若
∥
,且θ∈(0,π),求θ;
(2)若|3
+
|=|
﹣3
|,求|
+
|的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com