欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

7.已知函數(shù)f(x)=2|cosx|sinx+sin2x,給出下列四個(gè)命題:
①函數(shù)f(x)的圖象關(guān)于直線$x=\frac{π}{4}$對(duì)稱;
②函數(shù)f(x)在區(qū)間$[-\frac{π}{4},\frac{π}{4}]$上單調(diào)遞增;
③函數(shù)f(x)的最小正周期為π;
④函數(shù)f(x)的值域?yàn)閇-2,2].
其中真命題的序號(hào)是②④.(將你認(rèn)為真命題的序號(hào)都填上)

分析 利用三角函數(shù)的周期性、單調(diào)性、值域以及它的圖象的對(duì)稱性,判斷各個(gè)選項(xiàng)是否正確,從而得出結(jié)論.

解答 解:對(duì)于函數(shù)f(x)=2|cosx|sinx+sin2x,由于f(-$\frac{3π}{4}$)=-2,f($\frac{5π}{4}$)=0,∴f(-$\frac{3π}{4}$)≠f($\frac{5π}{4}$),
故f(x)的圖象不關(guān)于直線$x=\frac{π}{4}$對(duì)稱,故排除①.
在區(qū)間$[-\frac{π}{4},\frac{π}{4}]$上,2x∈[-$\frac{π}{2}$,$\frac{π}{2}$],f(x)=2|cosx|sinx+sin2x=2sin2x 單調(diào)遞增,故②正確.
函數(shù)f($\frac{π}{3}$)=$\sqrt{3}$,f($\frac{4π}{3}$)=0,∴f($\frac{π}{3}$)≠f($\frac{4π}{3}$),故函數(shù)f(x)的最小正周期不是π,故③錯(cuò)誤.
當(dāng)cosx≥0時(shí),f(x)=2|cosx|sinx+sin2x=2sinxcosx+sin2x=2sin2x,故它的最大值為2,最小值為-2;
當(dāng)cosx<0時(shí),f(x)=2|cosx|sinx+sin2x=-2sinxcosx+sin2x=0,
綜合可得,函數(shù)f(x)的最大值為2,最小值為-2,故④正確,
故答案為:②④.

點(diǎn)評(píng) 本題主要考查三角函數(shù)的周期性、單調(diào)性、值域以及它的圖象的對(duì)稱性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.(文)設(shè)F是雙曲線E:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$右焦點(diǎn),$P(\frac{a^2}{c},\frac{{\sqrt{2}a}}{2})$為直線上一點(diǎn),直線垂直于x軸,垂足為M,若△PMF等腰三角形,則E的離心率為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖所示,SA⊥平面ABC,AB⊥BC,過(guò)A作SB的垂線,垂足為E,過(guò)E作SC的垂線,垂足為F.
(1)求證:AF⊥SC;
(2)若SA=AB=BC=2,求平面AEF與平面ABC所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.一個(gè)口袋中裝有2個(gè)白球和3個(gè)黑球,這5個(gè)球除顏色外完全相同,從中摸出2個(gè)球,則這2個(gè)球顏色相同的概率為( 。
A.$\frac{3}{10}$B.$\frac{2}{5}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.閱讀如圖的程序框圖,運(yùn)行相應(yīng)的程序,則輸出的S的值為( 。
A.$\frac{3}{2}$B.$\frac{5}{3}$C.$\frac{41}{24}$D.$\frac{103}{60}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且b,c是關(guān)于x的一元二次方程x2+mx-a2+b2+c2=0的兩根.
(1)求角A的大。
(2)已知a=$\sqrt{3}$,設(shè)B=θ,△ABC的面積為y,求y=f(θ)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知定義在R上的奇函數(shù)f(x)滿足:當(dāng)x≥0時(shí),f(x)=log2(x+m),則f(m-16)=( 。
A.4B.-4C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=ax2+(x-1)ex
(1)當(dāng)a=-$\frac{e+1}{2}$時(shí),求f(x)在點(diǎn)P(1,f(1))處的切線方程;
(2)討論f(x)的單調(diào)性;
(3)當(dāng)-$\frac{1}{2}$<a<-$\frac{1}{2e}$時(shí),f(x)是否存在極值?若存在,求所有極值的和的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知定義域?yàn)镮的函數(shù)f(x),若存在開(kāi)區(qū)間(a,b)⊆I和正的常數(shù)c,使得任意x∈(a,b)都有-c<f(x)<c,且對(duì)任意x∉(a,b)都有|f(x)|=c恒成立,則稱f(x)為區(qū)間I上的“Z型”函數(shù),給出下列函數(shù):①f(x)=$\left\{\begin{array}{l}{2,x≤1}\\{4-2x,1<x<3}\\{-2,x≥3}\end{array}\right.$;②f(x)=$\left\{\begin{array}{l}{\sqrt{x},x≥0}\\{0,x<0}\end{array}\right.$;③f(x)=|sinx|;④f(x)=x+cosx,其中是區(qū)間I上的“Z型”函數(shù)的是①(只需寫(xiě)出序號(hào)即可)

查看答案和解析>>

同步練習(xí)冊(cè)答案