【題目】設(shè)橢圓
(
)的左、右焦點為
,右頂點為
,上頂點為
.已知
.
(1)求橢圓的離心率;
(2)設(shè)
為橢圓上異于其頂點的一點,以線段
為直徑的圓經(jīng)過點
,經(jīng)過原點
的直線
與該圓相切,求直線
的斜率.
【答案】(1)
;(2)直線
的斜率為
或
.
【解析】試題(1)設(shè)橢圓的右焦點
的坐標(biāo)為
,由已知
,可得
,結(jié)合
,可得
,從而可求得橢圓的離心率;(2)在(1)的基礎(chǔ)上,可先利用
及數(shù)量積的坐標(biāo)運(yùn)算求出
點的坐標(biāo),再求出以線段
為直徑的圓的方程(圓心坐標(biāo)和半徑),最后設(shè)經(jīng)過原點
的與該圓相切的直線
的方程為
,由圓心到切線的距離等于半徑,列方程,解方程即可得求得直線
的斜率.
(1)設(shè)橢圓的右焦點
的坐標(biāo)為
.由
,可得
,又
,則
,∴橢圓的離心率
.
(2)由(1)知
,
,故橢圓方程為
.設(shè)
.由
,
,有
,
.由已知,有
,即
.又
,故有
①
又∵點
在橢圓上,故
②
由①和②可得
.而點
不是橢圓的頂點,故
,代入①得
,即點
的坐標(biāo)為
.設(shè)圓的圓心為
,則
,
,進(jìn)而圓的半徑
.設(shè)直線
的斜率為
,依題意,直線
的方程為
.由
與圓相切,可得
,即
,整理得
,解得
.∴直線
的斜率為
或
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方體
的棱長為
,
,
,
,
分別是
,
,
,
的中點,則過
且與
平行的平面截正方體所得截面的面積為______,
和該截面所成角的正弦值為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,A 為橢圓
的下頂點,過 A 的直線 l 交拋物線
于B、C 兩點,C 是 AB 的中點.
![]()
(I)求證:點C的縱坐標(biāo)是定值;
(II)過點C作與直線 l 傾斜角互補(bǔ)的直線l交橢圓于M、N兩點,求p的值,使得△BMN的面積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正整數(shù)n都可以唯一表示為
①的形式,其中m為非負(fù)整數(shù),
(
,
),
.試求①中的數(shù)列
嚴(yán)格單調(diào)遞增或嚴(yán)格單調(diào)遞減的所有正整數(shù)n的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】5G網(wǎng)絡(luò)是第五代移動通信網(wǎng)絡(luò),其峰值理論傳輸速度可達(dá)每8秒1GB,比4G網(wǎng)絡(luò)的傳輸速度快數(shù)百倍.舉例來說,一部1G的電影可在8秒之內(nèi)下載完成.隨著5G技術(shù)的誕生,用智能終端分享3D電影、游戲以及超高畫質(zhì)(UHD)節(jié)目的時代正向我們走來.某手機(jī)網(wǎng)絡(luò)研發(fā)公司成立一個專業(yè)技術(shù)研發(fā)團(tuán)隊解決各種技術(shù)問題,其中有數(shù)學(xué)專業(yè)畢業(yè),物理專業(yè)畢業(yè),其它專業(yè)畢業(yè)的各類研發(fā)人員共計1200人.現(xiàn)在公司為提高研發(fā)水平,采用分層抽樣抽取400人按分?jǐn)?shù)對工作成績進(jìn)行考核,并整理得如上頻率分布直方圖(每組的頻率視為概率).
![]()
(1)從總體的1200名學(xué)生中隨機(jī)抽取1人,估計其分?jǐn)?shù)小于50的概率;
(2)研發(fā)公司決定對達(dá)到某分?jǐn)?shù)以上的研發(fā)人員進(jìn)行獎勵,要求獎勵研發(fā)人員的人數(shù)達(dá)到30%,請你估計這個分?jǐn)?shù)的值;
(3)已知樣本中有三分之二的數(shù)學(xué)專業(yè)畢業(yè)的研發(fā)人員分?jǐn)?shù)不低于70分,樣本中不低于70分的數(shù)學(xué)專業(yè)畢業(yè)的研發(fā)人員人數(shù)與物理及其它專業(yè)畢業(yè)的研發(fā)人員的人數(shù)和相等,估計總體中數(shù)學(xué)專業(yè)畢業(yè)的研發(fā)人員的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】![]()
(本題滿分15分)已知m>1,直線
,
橢圓
,
分別為橢圓
的左、右焦點.
(Ⅰ)當(dāng)直線
過右焦點
時,求直線
的方程;
(Ⅱ)設(shè)直線
與橢圓
交于
兩點,
,
的重心分別為
.若原點
在以線段
為直徑的圓內(nèi),求實數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com