【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
,(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)寫出曲線
的極坐標(biāo)方程和曲線
的直角坐標(biāo)方程;
(2)若射線
與曲線
相交于點(diǎn)
,將
逆時(shí)針旋轉(zhuǎn)
后,與曲線
相交于點(diǎn)
,且
,求
的值.
【答案】(1)
;
(2)![]()
【解析】
(1)消去曲線
參數(shù)方程中的
,求得其普通方程,再根據(jù)極坐標(biāo)和直角坐標(biāo)轉(zhuǎn)化的公式,求得曲線
的極坐標(biāo)方程.利用極坐標(biāo)和直角坐標(biāo)轉(zhuǎn)化的公式,求得
的直角坐標(biāo)方程.
(2)將
代入
的極坐標(biāo)方程,求得
的值,然后將
曲線
的極坐標(biāo)方程,求得
的值.根據(jù)
列方程,求得
的值,進(jìn)而求得
的大小.
(1)由曲線
的參數(shù)方程為
,(
為參數(shù)),可得其普通方程
,
由
,得曲線
的極坐標(biāo)方程
.
,
由
,得曲線
的直角坐標(biāo)方程
.
(2)將
代入
,
得
.
將
逆時(shí)針旋轉(zhuǎn)
,得
的極坐標(biāo)方程為
,代入曲線
的極坐標(biāo)方程,得
.
由
,得
,
.
即
,解得
.
因?yàn)?/span>
,所以
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐
中,四邊形ABCD為正方形,
平面ACD,且
,E為PD的中點(diǎn).
![]()
(Ⅰ)證明:平面
平面PAD;
(Ⅱ)求直線PA與平面AEC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
如圖,在三棱錐
中, 側(cè)面
與側(cè)面
均為等邊三角形,![]()
為
中點(diǎn).
(Ⅰ)證明:
平面![]()
(Ⅱ)求二面角
的余弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠生產(chǎn)某種型號(hào)的電視機(jī)零配件,為了預(yù)測(cè)今年
月份該型號(hào)電視機(jī)零配件的市場(chǎng)需求量,以合理安排生產(chǎn),工廠對(duì)本年度
月份至
月份該型號(hào)電視機(jī)零配件的銷售量及銷售單價(jià)進(jìn)行了調(diào)查,銷售單價(jià)
(單位:元)和銷售量
(單位:千件)之間的
組數(shù)據(jù)如下表所示:
月份 |
|
|
|
|
|
|
銷售單價(jià) |
|
|
|
|
|
|
銷售量 |
|
|
|
|
|
|
(1)根據(jù)1至
月份的數(shù)據(jù),求
關(guān)于
的線性回歸方程(系數(shù)精確到
);
(2)結(jié)合(1)中的線性回歸方程,假設(shè)該型號(hào)電視機(jī)零配件的生產(chǎn)成本為每件
元,那么工廠如何制定
月份的銷售單價(jià),才能使該月利潤(rùn)達(dá)到最大(計(jì)算結(jié)果精確到
)?
參考公式:回歸直線方程
,其中
.
參考數(shù)據(jù):
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若執(zhí)行下面的程序框圖,輸出
的值為3,則判斷框中應(yīng)填入的條件是( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】每個(gè)國(guó)家對(duì)退休年齡都有不一樣的規(guī)定,從2018年開(kāi)始,我國(guó)關(guān)于延遲退休的話題一直在網(wǎng)上熱議,為了了解市民對(duì)“延遲退休”的態(tài)度,現(xiàn)從某地市民中隨機(jī)選取100人進(jìn)行調(diào)查,調(diào)查情況如下表:
年齡段(單位:歲) |
|
|
|
|
|
|
被調(diào)查的人數(shù) |
|
|
|
|
|
|
贊成的人數(shù) |
|
|
|
|
|
|
(1)從贊成“延遲退休”的人中任選1人,此人年齡在
的概率為
,求出表格中
的值;
(2)若從年齡在
的參與調(diào)查的市民中按照是否贊成“延遲退休”進(jìn)行分層抽樣,從中抽取10人參與某項(xiàng)調(diào)查,然后再?gòu)倪@10人中隨機(jī)抽取4人參加座談會(huì),記這4人中贊成“延遲退休”的人數(shù)為
,求
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,橢圓
,
、
,為橢圓
的左、右頂點(diǎn).
![]()
設(shè)
為橢圓
的左焦點(diǎn),證明:當(dāng)且僅當(dāng)橢圓
上的點(diǎn)
在橢圓的左、右頂點(diǎn)時(shí),
取得最小值與最大值.
若橢圓
上的點(diǎn)到焦點(diǎn)距離的最大值為
,最小值為
,求橢圓
的標(biāo)準(zhǔn)方程.
若直線
與
中所述橢圓
相交于
、
兩點(diǎn)(
、
不是左、右頂點(diǎn)),且滿足
,求證:直線
過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)X~N(μ1,
),Y~N(μ2,
),這兩個(gè)正態(tài)分布密度曲線如圖所示,下列結(jié)論中正確的是 ( )
![]()
A. P(Y≥μ2)≥P(Y≥μ1)
B. P(X≤σ2)≤P(X≤σ1)
C. 對(duì)任意正數(shù)t,P(X≥t)≥P(Y≥t)
D. 對(duì)任意正數(shù)t,P(X≤t)≥P(Y≤t)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)討論函數(shù)
的單調(diào)性;
(Ⅱ)若函數(shù)
有極小值,求該極小值的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com