分析 (1)根據(jù)復(fù)合函數(shù)求定義域的方法即可求出,
(2)根據(jù)對(duì)數(shù)函數(shù)底數(shù)和真數(shù)的要求即可求出.
解答 解:(1)∵函數(shù)f(x)的定義域?yàn)椋?,+∞),
∴l(xiāng)og${\;}_{\frac{1}{3}}$x>0,
∴0<x<1,
故f(log${\;}_{\frac{1}{3}}$x)的定義域?yàn)椋?,1);
(2)要使函數(shù)y=logx-1(3-x)有意義,
則$\left\{\begin{array}{l}{3-x>0}\\{x-1>0}\\{x-1≠1}\end{array}\right.$,
解得1<x<3,且x≠2,
故函數(shù)y=logx-1(3-x)的定義域?yàn)椋?,2)∪(2,3).
點(diǎn)評(píng) 本題考查抽象函數(shù)的定義域的求法,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意對(duì)數(shù)函數(shù)性質(zhì)的靈活運(yùn)用.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -$\frac{\sqrt{2}}{2}$ | B. | -$\frac{4\sqrt{2}}{7}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{4\sqrt{2}}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com