【題目】在如圖所示的幾何體中,平面
平面
,四邊形
是菱形,四邊形
是矩形,
,
,
,
是
的中點(diǎn).
![]()
(Ⅰ)求證:
平面
;
(II)在線段
上是否存在一點(diǎn)
,使三棱錐
的體積為
?若存在,求出
的長;若不存在,請說明理由.
【答案】見解析
【解析】 (Ⅰ)如圖,連結(jié)BD,由四邊形
是菱形,
,
是
的中點(diǎn),得
, …………2分
因?yàn)樗倪呅?/span>
是矩形,平面
⊥平面
,且交線為AD,
所以
平面
,又
平面
,所以
. ……………4分
又
,所以
平面
.……………………6分
(Ⅱ)假設(shè)線段
上存在一點(diǎn)
,使三棱錐
的體積為
,設(shè)
,
由(Ⅰ)得
平面
,由于
,所以
,……9分
因?yàn)?/span>
,所以
,解得
,即
的長為
.……12分
【命題意圖】本題考查平面和平面垂直的性質(zhì)定理、直線和平面垂直的判定定理、三棱錐的體積等基礎(chǔ)知識,意在考查空間想象能力和運(yùn)算求解能力.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌的手機(jī)專賣店采用分期付款方式經(jīng)銷手機(jī),從參與購手機(jī)活動的100名顧客中進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如下表所示,已知分3期付款的頻率為0.2,若顧客采用一次付清,其利潤為200元,采用2期或3期付款,其利潤為250元,采用4期或5期付款,其利潤為300元.
付款期數(shù) | 1 | 2 | 3 | 4 | 5 |
頻數(shù) | 40 | 20 | a | b | 10 |
(I)若以上表計(jì)算出的頻率近似代替概率,從購買手機(jī)的顧客(數(shù)量較多)中隨機(jī)抽取3位顧客,求事件
“至多有1位采用分3期付款”的概率
;
(II)按分層抽樣的方式從這100位顧客中抽取5人,再從抽出的5人中隨機(jī)抽取3人,記該店在這3人身上賺取的總利潤為隨機(jī)變量
,求
的分布列及數(shù)學(xué)期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c為△ABC的三個(gè)內(nèi)角A,B,C的對邊,向量
=(﹣1,
),
=(cosA,sinA).若
⊥
,且acosB+bcosA=csinC,則角A,B的大小分別為( )
A.
, ![]()
![]()
B.
, ![]()
![]()
C.
, ![]()
![]()
D.
, ![]()
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
).
(Ⅰ)討論函數(shù)
的單調(diào)性.
(Ⅱ)設(shè)
,若
,
都有
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式mx2+2x+6m>0,在下列條件下分別求m的值或取值范圍:
(1)不等式的解集為{x|2<x<3};
(2)不等式的解集為R.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知半徑為5的圓的圓心在
軸上,圓心的橫坐標(biāo)是整數(shù),且與直線
相切.
(1)求圓的方程;
(2)設(shè)直線
與圓相交于
、
兩點(diǎn),求實(shí)數(shù)
的取值范圍;
(3)在(2)的條件下,是否存在實(shí)數(shù)
,使得弦
的垂直平分線
過點(diǎn)
?若存在,求出實(shí)數(shù)
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從向陽小區(qū)抽取100戶居民進(jìn)行月用電量調(diào)查,為制定階梯電價(jià)提供數(shù)據(jù),發(fā)現(xiàn)其用電量都在50到350度之間,制作頻率分布直方圖的工作人員粗心大意,位置t處未標(biāo)明數(shù)據(jù),你認(rèn)為t=( ) ![]()
A.0.0041
B.0.0042
C.0.0043
D.0.0044
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直角三角形ABC中角A,B,C對邊長分別為a,b,c,∠C=90°.
(1)若三角形面積為2,求斜邊長c最小值;
(2)試比較an+bn與cn(n∈N*)的大小,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于y=3sin(2x﹣
)有以下命題:
①f(x1)=f(x2)=0,則x1﹣x2=kπ(k∈Z);
②函數(shù)的解析式可化為y=3cos(2x﹣
);
③圖象關(guān)于x=﹣
對稱;④圖象關(guān)于點(diǎn)(﹣
,0)對稱.
其中正確的是 .
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com