(本小題滿分12分)在數(shù)列
中,
,并且對于任意n∈N*,都有
.
(1)證明數(shù)列
為等差數(shù)列,并求
的通項(xiàng)公式;
(2)設(shè)數(shù)列
的前n項(xiàng)和為
,求使得
的最小正整數(shù)
.
(1)
(2) 91
解析試題分析:解:(1)
,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/19/e/1v0oc4.png" style="vertical-align:middle;" />,所以
,
∴ 數(shù)列
是首項(xiàng)為1,公差為2的等差數(shù)列,
∴
,從而
…………………………………………6分
(2) 因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ba/8/1s6a84.png" style="vertical-align:middle;" />
所以![]()
![]()
,
由
,
得
,
最小正整數(shù)
為91.………………………………………………12分
考點(diǎn):本試題考查了數(shù)列的通項(xiàng)公式和求和的運(yùn)用。
點(diǎn)評:對于已知等差數(shù)列和等比數(shù)列的通項(xiàng)公式的求解,主要是求解兩個基本元素,解方程組得到結(jié)論。而對于一般的數(shù)列求和思想,主要是分析其通項(xiàng)公式的特點(diǎn),選擇是用錯位相減法還是裂項(xiàng)法,還是倒序相加法等等的求和方法來得到。屬于中檔題。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)
,且不等式
對任意的實(shí)數(shù)
恒成立,數(shù)列
滿足
,![]()
.
(1)求
的值;
(2)求數(shù)列
的通項(xiàng)公式;
(3)求證
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
設(shè)數(shù)列{
}的前n項(xiàng)和為
,且
=1,
,數(shù)列{
}滿足
,點(diǎn)P(
,
)在直線x―y+2=0上,
.
(1)求數(shù)列{
},{
}的通項(xiàng)公式;
(2)設(shè)
,求數(shù)列{
}的前n項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分) 正項(xiàng)數(shù)列{an}滿足a1=2,點(diǎn)An(
)在雙曲線y2-x2=1上,點(diǎn)(
)在直線y=-
x+1上,其中Tn是數(shù)列{bn}的前n項(xiàng)和。
①求數(shù)列{an}、{bn}的通項(xiàng)公式;
②設(shè)Cn=anbn,證明 Cn+1<Cn
③若m-7anbn>0恒成立,求正整數(shù)m的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知數(shù)列
的相鄰兩項(xiàng)
是關(guān)于
的方程![]()
N
的兩根,且
.
(1) 求數(shù)列
和
的通項(xiàng)公式;
(2) 設(shè)
是數(shù)列
的前
項(xiàng)和, 問是否存在常數(shù)
,使得
對任意
N
都成立,若存在, 求出
的取值范圍; 若不存在, 請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
正項(xiàng)數(shù)列
的首項(xiàng)為
,
時,
,數(shù)列
對任意
均有![]()
(1)若
,求證:數(shù)列
是等差數(shù)列;
(2)已知
,數(shù)列
滿足
,記數(shù)列
的前
項(xiàng)和為
,求證
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
前
項(xiàng)和
滿足
,等差數(shù)列
滿足![]()
(1)求數(shù)列![]()
的通項(xiàng)公式
(2)設(shè)
,數(shù)列
的前
項(xiàng)和為
,問
的最小正整數(shù)n是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分)數(shù)列
中,
,
![]()
(1)求證:
時,
是等比數(shù)列,并求
通項(xiàng)公式。
(2)設(shè)
,
,
求:數(shù)列
的前n項(xiàng)的和
。
(3)設(shè)
、
、
。記
,數(shù)列
的前n項(xiàng)和
。證明:
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)已知數(shù)列
中,
,
,其前
項(xiàng)和
滿足
(
,
).
(Ⅰ)求證:數(shù)列
為等差數(shù)列,并求
的通項(xiàng)公式;
(Ⅱ)設(shè)
, 求數(shù)列
的前
項(xiàng)和
;
(Ⅲ)設(shè)
(
為非零整數(shù),
),試確定
的值,使得對任意
,有
恒成立.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com