已知圓
的圓心為原點(diǎn)
,且與直線
相切。![]()
(1)求圓
的方程;
(2)過點(diǎn)
(8,6)引圓O的兩條切線
,切點(diǎn)為
,求直線
的方程。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)
和圓
:
.![]()
(Ⅰ)過點(diǎn)
的直線
被圓
所截得的弦長為
,求直線
的方程;
(Ⅱ)試探究是否存在這樣的點(diǎn)
:
是圓
內(nèi)部的整點(diǎn)(平面內(nèi)橫、縱坐標(biāo)均為整數(shù)的點(diǎn)稱為整點(diǎn)),且△OEM的面積
?若存在,求出點(diǎn)
的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
直線
與圓
交于
、
兩點(diǎn),記△
的面積為
(其中
為坐標(biāo)原點(diǎn)).
(1)當(dāng)
,
時(shí),求
的最大值;
(2)當(dāng)
,
時(shí),求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓
,直線
過定點(diǎn)
.
(1)求圓心
的坐標(biāo)和圓的半徑
;
(2)若
與圓C相切,求
的方程;
(3)若
與圓C相交于P,Q兩點(diǎn),求三角形
面積的最大值,并求此時(shí)
的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知:以點(diǎn)C (t,
)(t∈R , t ≠ 0)為圓心的圓與
軸交于點(diǎn)O, A,與y軸交于點(diǎn)O, B,其中O為原點(diǎn).
(1)求證:△OAB的面積為定值;
(2)設(shè)直線y = –2x+4與圓C交于點(diǎn)M, N,若|OM| = |ON|,求圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題11分)已知圓
,過原點(diǎn)
的直線
與圓
相交于
兩點(diǎn)
(1) 若弦
的長為
,求直線
的方程;
(2)求證:
為定值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分15分)
設(shè)有半徑為3
的圓形村落,
、
兩人同時(shí)從村落中心出發(fā)。
一直向北直行;
先向東直行,出村后一段時(shí)間,改變前進(jìn)方向,沿著與村落邊界相切的直線朝
所在的方向前進(jìn)。
(1)若
在距離中心5
的地方改變方向,建立適當(dāng)坐標(biāo)系,
求:
改變方向后前進(jìn)路徑所在直線的方程
(2)設(shè)
、
兩人速度一定,其速度比為
,且后來
恰與
相遇.問兩人在何處相遇?
(以村落中心為參照,說明方位和距離)![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com