【題目】已知兩定點(diǎn)
,點(diǎn)
是平面內(nèi)的動點(diǎn),且
,記
的軌跡是![]()
(1)求曲線
的方程;
(2)過點(diǎn)
引直線
交曲線
于
兩點(diǎn),設(shè)
,點(diǎn)
關(guān)于
軸的對稱點(diǎn)為
,證明直線
過定點(diǎn).
【答案】(1)
;(2)見解析
【解析】
設(shè)
,根據(jù)條件列方程化簡即可;(2)先探究特殊性,當(dāng)點(diǎn)Q為橢圓的上頂
點(diǎn)(0,
)時,直線RN過定點(diǎn)P(4,0).再討論一般情形,設(shè)直線l:
點(diǎn)R,N,P三點(diǎn)共線,因此直線RN經(jīng)過定點(diǎn)P(4,0).
(1)設(shè)
,
,
,
則
,
,
由于
,
即
,設(shè)
,
,
則
,點(diǎn)
的軌跡是以
,
為焦點(diǎn)的橢圓,
故
,
,
,
所以,動點(diǎn)
的軌跡
的方程為:
.
如圖所示,
![]()
先探究特殊性,當(dāng)點(diǎn)Q為橢圓的上頂點(diǎn)(0,
)時,直線l:
,
聯(lián)立直線和橢圓方程得
,
直線RN:
令y=0,得x=4,
所以直線RN過定點(diǎn)P(4,0).
下面證明一般情形:
設(shè)直線l:![]()
聯(lián)立
,
判別式![]()
所以![]()
![]()
即
,
設(shè)
,于是,
,
又
,
解得
,
所以
,
所以點(diǎn)R,N,P三點(diǎn)共線,因此直線RN經(jīng)過定點(diǎn)P(4,0).
綜上,直線RN經(jīng)過定點(diǎn)P(4,0).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于直線m、n及平面
、
,下列命題中正確的個數(shù)是( )
①若
,則
②若
,則![]()
③若
,則
④若
,則![]()
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)當(dāng)
時,求曲線
在點(diǎn)
處的切線方程;
(Ⅱ)當(dāng)
時,
(ⅰ)求
的單調(diào)區(qū)間;
(ⅱ)若
在區(qū)間
內(nèi)單調(diào)遞減,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為降低空氣污染,提高環(huán)境質(zhì)量,政府決定對汽車尾氣進(jìn)行整治.某廠家生產(chǎn)甲、乙兩種不同型號的汽車尾氣凈化器,為保證凈化器的質(zhì)量,分別從甲、乙兩種型號的凈化器中隨機(jī)抽取100件作為樣本進(jìn)行產(chǎn)品性能質(zhì)量評估,評估綜合得分
都在區(qū)間
.已知評估綜合得分與產(chǎn)品等級如下表:
![]()
根據(jù)評估綜合得分,統(tǒng)計整理得到了甲型號的樣本頻數(shù)分布表和乙型號的樣本頻率分布直方圖(圖表如下).
![]()
甲型 乙型
(Ⅰ)從廠家生產(chǎn)的乙型凈化器中隨機(jī)抽取一件,估計這件產(chǎn)品為二級品的概率;
(Ⅱ)從廠家生產(chǎn)的乙型凈化器中隨機(jī)抽取3件,設(shè)隨機(jī)變量
為其中二級品的個數(shù),求
的分布列和數(shù)學(xué)期望;
(Ⅲ)根據(jù)圖表數(shù)據(jù),請自定標(biāo)準(zhǔn),對甲、乙兩種型號汽車尾氣凈化器的優(yōu)劣情況進(jìn)行比較.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機(jī)構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)者崗位分布條形圖,則下列結(jié)論中不一定正確的是( ).
注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.
![]()
A. 互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的20%
C. 互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營崗位的人數(shù)90后比80前多
D. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直三棱柱
中,
,
,D為線段AC的中點(diǎn).
![]()
(1)求證:
:
(2)求直線
與平面
所成角的余弦值;
(3)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
是橢圓
的左、右焦點(diǎn),
為坐標(biāo)原點(diǎn),點(diǎn)
在橢圓上,線段
與
軸的交點(diǎn)
滿足
.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)圓
是以
為直徑的圓,一直線
與圓
相切,并與橢圓交于不同的兩點(diǎn)
、
,當(dāng)
,且滿足
時,求
的面積
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時,討論
極值點(diǎn)的個數(shù);
(2)若a,b分別為
的最大零點(diǎn)和最小零點(diǎn),當(dāng)
時,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,離心率為
的橢圓
過點(diǎn)
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若直線
上存在點(diǎn)
,且過點(diǎn)
的橢圓
的兩條切線相互垂直,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com