【題目】關(guān)于直線m、n及平面
、
,下列命題中正確的個數(shù)是( )
①若
,則
②若
,則![]()
③若
,則
④若
,則![]()
A.0B.1C.2D.3
【答案】B
【解析】
①:根據(jù)線面的位置關(guān)系和線線關(guān)系進(jìn)行判斷即可;
②:根據(jù)線面平行的性質(zhì)進(jìn)行判斷即可;
③:根據(jù)線面平行的性質(zhì)定理、面面垂直的判定定理進(jìn)行判斷即可;
④:根據(jù)面面垂直的性質(zhì)定理進(jìn)行判斷即可.
①:因為
,所以直線m與平面
沒有交點,而
,所以直線m與直線n沒有交點,故兩直線的位置關(guān)系是平行或異面,故本命題不正確;
②:因為
,所以直線m、n和平面
沒有交點,故兩條直線可以相交、平行、異面,故本命題不正確;
③:因為
,所以存在一個過直線m的平面
與
相交,設(shè)交線為
,因此有
,又因為
,所以
,由面面垂直的判定定理可得,
,故本命題正確;
④:因為
,所以只有當(dāng)m與
的交線垂直時,才能得到
,故本命題不正確,因此只有一個命題正確.
故選:B
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某銷售公司在當(dāng)?shù)?/span>
、
兩家超市各有一個銷售點,每日從同一家食品廠一次性購進(jìn)一種食品,每件200元,統(tǒng)一零售價每件300元,兩家超市之間調(diào)配食品不計費用,若進(jìn)貨不足食品廠以每件250元補(bǔ)貨,若銷售有剩余食品廠以每件150回收.現(xiàn)需決策每日購進(jìn)食品數(shù)量,為此搜集并整理了
、
兩家超市往年同期各50天的該食品銷售記錄,得到如下數(shù)據(jù):
銷售件數(shù) | 8 | 9 | 10 | 11 |
頻數(shù) | 20 | 40 | 20 | 20 |
以這些數(shù)據(jù)的頻數(shù)代替兩家超市的食品銷售件數(shù)的概率,記
表示這兩家超市每日共銷售食品件數(shù),
表示銷售公司每日共需購進(jìn)食品的件數(shù).
(1)求
的分布列;
(2)以銷售食品利潤的期望為決策依據(jù),在
與
之中選其一,應(yīng)選哪個?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于曲線
,若存在非負(fù)實常數(shù)
和
,使得曲線
上任意一點
有
成立(其中
為坐標(biāo)原點),則稱曲線
為既有外界又有內(nèi)界的曲線,簡稱“有界曲線”,并將最小的外界
成為曲線
的外確界,最大的內(nèi)界
成為曲線
的內(nèi)確界.
(1)曲線
與曲線
是否為“有界曲線”?若是,求出其外確界與內(nèi)確界;若不是,請說明理由;
(2)已知曲線
上任意一點
到定點
,
的距離之積為常數(shù)
,求曲線
的外確界與內(nèi)確界.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測標(biāo)準(zhǔn),其合格產(chǎn)品的質(zhì)量
與尺寸x(mm)之間近似滿足關(guān)系式
(b、c為大于0的常數(shù)).按照某項指標(biāo)測定,當(dāng)產(chǎn)品質(zhì)量與尺寸的比在區(qū)間
內(nèi)時為優(yōu)等品.現(xiàn)隨機(jī)抽取6件合格產(chǎn)品,測得數(shù)據(jù)如下:
尺寸x(mm) | 38 | 48 | 58 | 68 | 78 | 88 |
質(zhì)量y (g) | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
質(zhì)量與尺寸的比 | 0.442 | 0.392 | 0.357 | 0.329 | 0.308 | 0.290 |
(Ⅰ)現(xiàn)從抽取的6件合格產(chǎn)品中再任選3件,記
為取到優(yōu)等品的件數(shù),試求隨機(jī)變量
的分布列和期望;
(Ⅱ)根據(jù)測得數(shù)據(jù)作了初步處理,得相關(guān)統(tǒng)計量的值如下表:
|
|
|
|
75.3 | 24.6 | 18.3 | 101.4 |
(。└鶕(jù)所給統(tǒng)計量,求y關(guān)于x的回歸方程;
(ⅱ)已知優(yōu)等品的收益
(單位:千元)與
的關(guān)系為
,則當(dāng)優(yōu)等品的尺寸x為何值時,收益
的預(yù)報值最大?(精確到0.1)
附:對于樣本
,其回歸直線
的斜率和截距的最小二乘估計公式分別為:
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過多很有創(chuàng)意的求法,如著名的蒲豐試驗,受其啟發(fā),我們也可以通過設(shè)計下面的試驗來估計
的值,試驗步驟如下:①先請高二年級
名同學(xué)每人在小卡片上隨機(jī)寫下一個實數(shù)對
;②若卡片上的
,
能與
構(gòu)成銳角三角形,則將此卡片上交;③統(tǒng)計上交的卡片數(shù),記為
;④根據(jù)統(tǒng)計數(shù)
,
估計
的值.那么可以估計
的值約為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
,離心率
,
是橢圓的左頂點,
是橢圓的左焦點,
,直線
:
.
(1)求橢圓
方程;
(2)直線
過點
與橢圓
交于
、
兩點,直線
、
分別與直線
交于
、
兩點,試問:以
為直徑的圓是否過定點,如果是,請求出定點坐標(biāo);如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足:
,且an+1
(n=1,2…)集合M={an|
}中的最小元素記為m.
(1)若a1=20,寫出m和a10的值:
(2)若m為偶數(shù),證明:集合M的所有元素都是偶數(shù);
(3)證明:當(dāng)且僅當(dāng)
時,集合M是有限集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩定點
,點
是平面內(nèi)的動點,且
,記
的軌跡是![]()
(1)求曲線
的方程;
(2)過點
引直線
交曲線
于
兩點,設(shè)
,點
關(guān)于
軸的對稱點為
,證明直線
過定點.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com