【題目】已知直線l1:2x+y+2=0,l2:mx+4y+n=0
(1)若l1⊥l2 , 求m的值,;
(2)若l1∥l2 , 且它們的距離為
,求m、n的值.
【答案】
(1)直線l1:y=﹣2x﹣2,斜率是﹣2,
直線l2:y=﹣
x﹣
,斜率是:﹣
,
若l1⊥l2,則﹣2(﹣
)=﹣1,解得:m=﹣2;
(2)若l1∥l2,則﹣2=﹣
,解得:m=8,
∴直線l1:y=﹣2x﹣2,直線l2:y=﹣2x﹣
,
在直線l1上取點(diǎn)(0,﹣2),
則(0,﹣2)到l2的距離是:
d=
=
,
解得:n=28或﹣12.
【解析】(1)求出直線的斜率,根據(jù)直線垂直的關(guān)系,得到關(guān)于m的方程,求出m的值即可;(2)根據(jù)直線平行,求出m的值,根據(jù)點(diǎn)到直線的距離求出n的值即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解兩平行線的距離的相關(guān)知識(shí),掌握已知兩條平行線直線
和
的一般式方程為
:
,![]()
,則
與
的距離為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)列
中,
,
,
,其中
.
⑴ 求證:數(shù)列
為等差數(shù)列;
⑵ 設(shè)
,
,數(shù)列
的前
項(xiàng)和為
,若當(dāng)
且
為偶數(shù)時(shí),
恒成立,求實(shí)數(shù)
的取值范圍;
⑶ 設(shè)數(shù)列
的前
項(xiàng)的和為
,試求數(shù)列
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
,則下列結(jié)論中正確的是( )
A. 將函數(shù)
的圖象向左平移
個(gè)單位后得到函數(shù)
的圖象
B. 函數(shù)
圖象關(guān)于點(diǎn)
中心對(duì)稱(chēng)
C. 函數(shù)
的圖象關(guān)于
對(duì)稱(chēng)
D. 函數(shù)
在區(qū)間
內(nèi)單調(diào)遞增
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄AP:(x﹣a)2+(y﹣b)2=r2(r>0)被y軸所截的弦長(zhǎng)為2,被x軸分成兩段弧,且弧長(zhǎng)之比等于
(其中P(a,b)為圓心,O為坐標(biāo)原點(diǎn)).
(1)求a,b所滿(mǎn)足的關(guān)系式;
(2)點(diǎn)P在直線x﹣2y=0上的投影為A,求事件“在圓P內(nèi)隨機(jī)地投入一點(diǎn),使這一點(diǎn)恰好在△POA內(nèi)”的概率的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A(1,2),B(﹣1,2),動(dòng)點(diǎn)P滿(mǎn)足
,若雙曲線
=1(a>0,b>0)的漸近線與動(dòng)點(diǎn)P的軌跡沒(méi)有公共點(diǎn),則雙曲線離心率的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知符號(hào)函數(shù)sgn(x)=
,則函數(shù)f(x)=sgn(lnx)﹣lnx的零點(diǎn)個(gè)數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,曲線
由上半橢圓
:
(
,
)和部分拋物線
:
(
)連接而成,
與
的公共點(diǎn)為
,
,其中
的離心率為
.
![]()
(1)求
,
的值;
(2)過(guò)點(diǎn)
的直線
與
,
分別交于點(diǎn)
,
(均異于點(diǎn)
,
),是否存在直線
,使得以
為直徑的圓恰好過(guò)
點(diǎn),若存在,求出直線
的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某景區(qū)修建一棟復(fù)古建筑,其窗戶(hù)設(shè)計(jì)如圖所示.圓
的圓心與矩形
對(duì)角線的交點(diǎn)重合,且圓與矩形上下兩邊相切(
為上切點(diǎn)),與左右兩邊相交(
,
為其中兩個(gè)交點(diǎn)),圖中陰影部分為不透光區(qū)域,其余部分為透光區(qū)域.已知圓的半徑為1m,且
.設(shè)
,透光區(qū)域的面積為
.
(1)求
關(guān)于
的函數(shù)關(guān)系式,并求出定義域;
(2)根據(jù)設(shè)計(jì)要求,透光區(qū)域與矩形窗面的面積比值越大越好.當(dāng)該比值最大時(shí),求邊
的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)=lg
,g(x)=ex+
,則 ( )
A.f(x)與g(x)都是奇函數(shù)
B.f(x)是奇函數(shù),g(x)是偶函數(shù)
C.f(x)與g(x)都是偶函數(shù)
D.f(x)是偶函數(shù),g(x)是奇函數(shù)
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com