【題目】某工廠生產(chǎn)一種產(chǎn)品,根據(jù)預測可知,該產(chǎn)品的產(chǎn)量平穩(wěn)增長,記2015年為第1年,第x年與年產(chǎn)量
(萬件)之間的關系如下表所示:
x | 1 | 2 | 3 | 4 |
| 4.00 | 5.52 | 7.00 | 8.49 |
現(xiàn)有三種函數(shù)模型:
,
,![]()
(1)找出你認為最適合的函數(shù)模型,并說明理由,然后選取
這兩年的數(shù)據(jù)求出相應的函數(shù)解析式;
(2)因受市場環(huán)境的影響,2020年的年產(chǎn)量估計要比預計減少30%,試根據(jù)所建立的函數(shù)模型,估計2020年的年產(chǎn)量.
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)
滿足
.
(1)求
的解析式;
(2)若
在
上單調(diào),求
的取值范圍;
(3)設
(
且a≠1),(
且
),當
時,
有最大值14,試求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設定義域為R的奇函數(shù)
(a為實數(shù))
(1)求a的值;
(2)判斷
的單調(diào)性(不必證明),并求出
的值域;
(3)若對任意的
,不等式
恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知
(a>0)是定義在R上的偶函數(shù),
(1)求實數(shù)a的值;
(2)判斷并證明函數(shù)
在
的單調(diào)性;
(3)若關于
的不等式
的解集為
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】命題
方程
表示雙曲線;命題
不等式
的解集是
.
為假,
為真,求
的取值范圍.
【答案】![]()
【解析】試題分析:由命題
方程
表示雙曲線,求出
的取值范圍,由命題
不等式
的解集是
,求出
的取值范圍,由
為假,
為真,得出
一真一假,分兩種情況即可得出
的取值范圍.
試題解析:
真 ![]()
,
真
或
![]()
∴![]()
真
假 ![]()
假
真 ![]()
∴
范圍為![]()
【題型】解答題
【結束】
18
【題目】如圖,設
是圓
上的動點,點
是
在
軸上的投影,
為
上一點,且
.
![]()
(1)當
在圓上運動時,求點
的軌跡
的方程;
(2)求過點
且斜率為
的直線被
所截線段的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工藝公司要對某種工藝品深加工,已知每個工藝品進價為20元,每個的加工費為n元,銷售單價為x元.根據(jù)市場調(diào)查,須有
,
,
,同時日銷售量m(單位:個)與
成正比.當每個工藝品的銷售單價為29元時,日銷售量為1000個.
(1)寫出日銷售利潤y(單位:元)與x的函數(shù)關系式;
(2)當每個工藝品的加工費用為5元時,要使該公司的日銷售利潤為100萬元,試確定銷售單價x的值.(提示:函數(shù)
與
的圖象在
上有且只有一個公共點)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
過點
,且其中一個焦點的坐標為
.
(1)求橢圓
的方程;
(2)過橢圓
右焦點
的直線
與橢圓交于兩點
,在
軸上是否存在點
,使得
為定值?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com