【題目】給出下列說(shuō)法:
①“
”是“
”的充分不必要條件;
②定義在
上的偶函數(shù)
的最大值為30;
③命題“
,
”的否定形式是“
,
”.其中正確說(shuō)法的個(gè)數(shù)為
A. 0 B. 1 C. 2 D. 3
【答案】C
【解析】
對(duì)于①,利用充分不必要條件的定義判讀其正確性,對(duì)于②,利用偶函數(shù)的定義求得參數(shù)的值,結(jié)合二次函數(shù)的性質(zhì),求得其最大值,得出其正確性,對(duì)于③,應(yīng)用特稱命題的否定形式,判斷其是否正確,即可得結(jié)果.
對(duì)于①,當(dāng)
時(shí),一定有
,但是當(dāng)
時(shí),
,
所以“
”是“
”的充分不必要條件,所以①正確;
對(duì)于②,因?yàn)?/span>
為偶函數(shù),所以
,因?yàn)槎x域?yàn)?/span>
,所以
,
所以函數(shù)
的最大值為
,所以②正確;
對(duì)于③,命題“
,
”的否定形式是“
,
”,
所以③是錯(cuò)誤的;
故正確命題的個(gè)數(shù)為2,
故選C.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
.
(1)若
是奇函數(shù),求
的值,并判斷
的單調(diào)性(不用證明);
(2)若函數(shù)
在區(qū)間(0,1)上有兩個(gè)不同的零點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) f (x) = x ex (xR)
(Ⅰ)求函數(shù) f (x)的單調(diào)區(qū)間和極值;
(Ⅱ)若x (0, 1), 求證: f (2 x) > f (x);
(Ⅲ)若x1 (0, 1), x2(1, +∞), 且 f (x1) = f (x2), 求證: x1 + x2 > 2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(
,
,
),
是自然對(duì)數(shù)的底數(shù).
(Ⅰ)當(dāng)
,
時(shí),求函數(shù)
的零點(diǎn)個(gè)數(shù);
(Ⅱ)若
,求
在
上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)若
,求函數(shù)
的極小值;
(2)設(shè)函數(shù)
,試問(wèn):在定義域內(nèi)是否存在三個(gè)不同的自變量
使得
的值相等,若存在,請(qǐng)求出
的范圍,若不存在,請(qǐng)說(shuō)明理由?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)節(jié)能降耗技術(shù)改造后,在生產(chǎn)某產(chǎn)品過(guò)程中的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸)的幾組對(duì)應(yīng)數(shù)據(jù)如表所示:
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
若根據(jù)表中數(shù)據(jù)得出y關(guān)于x的線性回歸方程為
0.7x+a,若生產(chǎn)7噸產(chǎn)品,預(yù)計(jì)相應(yīng)的生產(chǎn)能耗為( )噸.
A.5.25B.5.15C.5.5D.9.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額
(單位:億元)的折線圖.
![]()
為了預(yù)測(cè)該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額,建立了
與時(shí)間變量
的兩個(gè)線性回歸模型.根據(jù)2000年至2016年的數(shù)據(jù)(時(shí)間變量
的值依次為
)建立模型①:
;根據(jù)2010年至2016年的數(shù)據(jù)(時(shí)間變量
的值依次為
)建立模型②:
.
(1)分別利用這兩個(gè)模型,求該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測(cè)值;
(2)你認(rèn)為用哪個(gè)模型得到的預(yù)測(cè)值更可靠?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
:
的左、右焦點(diǎn)分別為
,
,左頂點(diǎn)為
,離心率為
,點(diǎn)
是橢圓上的動(dòng)點(diǎn),
的面積的最大值為
.
(1)求橢圓
的方程;
(2)設(shè)經(jīng)過(guò)點(diǎn)
的直線
與橢圓
相交于不同的兩點(diǎn)
,
,線段
的中垂線為
.若直線
與直線
相交于點(diǎn)
,與直線
相交于點(diǎn)
,求
的最小值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com