【題目】口袋中有大小、形狀、質(zhì)地相同的兩個(gè)白球和三個(gè)黑球.現(xiàn)有一抽獎(jiǎng)游戲規(guī)則如下:抽獎(jiǎng)?wù)呙看斡蟹呕氐膹目诖须S機(jī)取出一個(gè)球,最多取球2n+1(n
)次.若取出白球的累計(jì)次數(shù)達(dá)到n+1時(shí),則終止取球且獲獎(jiǎng),其它情況均不獲獎(jiǎng).記獲獎(jiǎng)概率為
.
(1)求
;
(2)證明:
.
【答案】(1)
;(2)見解析
【解析】
(1)分別求出每次取出的球是白球和黑球的概率,由題意知最多抽3次,獲獎(jiǎng)即連續(xù)兩次為白球或者前兩次中有一次是白球第三次也是白球,求出其概率和即可;
(2)依據(jù)取出白球次數(shù)是
,可分為以下情況:前n次取出n次白球,第n+1次取出的是白球,前n+1次取出n次白球,第n+2次取出的是白球,
,前2n次取出n次白球,第2n+1次取出的是白球,分別求出對(duì)應(yīng)的概率,相加可得
,通過作差結(jié)合組合數(shù)性質(zhì)即可得結(jié)果.
(1)根據(jù)題意,每次取出的球是白球的概率為
,取出的球是黑球的概率為
,
所以
;
(2)證明:累計(jì)取出白球次數(shù)是
的情況有:
前n次取出n次白球,第n+1次取出的是白球,概率為![]()
前n+1次取出n次白球,第n+2次取出的是白球,概率為![]()
![]()
前2n﹣1次取出n次白球,第2n次取出的是白球,概率為![]()
前2n次取出n次白球,第2n+1次取出的是白球,概率為![]()
則![]()
![]()
因此![]()
![]()
![]()
![]()
則![]()
![]()
![]()
因?yàn)?/span>
,
所以
,因此
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知2a=2bcosC+csinB.
(Ⅰ)求tanB;
(Ⅱ)若C
,△ABC的面積為6,求BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為
(α為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρcosθ=1.
(1)求C1的極坐標(biāo)方程,并求C1與C2交點(diǎn)的極坐標(biāo)
;
(2)若曲線C3:θ=β(ρ>0)與C1,C2的交點(diǎn)分別為M,N,求|OM||ON|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在發(fā)生公共衛(wèi)生事件期間,有專業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時(shí)間內(nèi)沒有發(fā)生大規(guī)模群體感染的標(biāo)志為“連續(xù)10天,每天新增疑似病例不超過7人”.過去10日,A、B、C、D四地新增疑似病例數(shù)據(jù)信息如下:
A地:中位數(shù)為2,極差為5; B地:總體平均數(shù)為2,眾數(shù)為2;
C地:總體平均數(shù)為1,總體方差大于0; D地:總體平均數(shù)為2,總體方差為3.
則以上四地中,一定符合沒有發(fā)生大規(guī)模群體感染標(biāo)志的是_______(填A、B、C、D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,港口A在港口O的正東100海里處,在北偏東方向有條直線航道OD,航道和正東方向之間有一片以B為圓心,半徑為
海里的圓形暗礁群(在這片海域行船有觸礁危險(xiǎn)),其中OB=
海里,tan∠AOB=
,cos∠AOD=
,現(xiàn)一艘科考船以
海里/小時(shí)的速度從O出發(fā)沿OD方向行駛,經(jīng)過2個(gè)小時(shí)后,一艘快艇以50海里/小時(shí)的速度準(zhǔn)備從港口A出發(fā),并沿直線方向行駛與科考船恰好相遇.
![]()
(1)若快艇立即出發(fā),判斷快艇是否有觸礁的危險(xiǎn),并說明理由;
(2)在無觸礁危險(xiǎn)的情況下,若快艇再等x小時(shí)出發(fā),求x的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
:
,其焦點(diǎn)到準(zhǔn)線的距離為2.直線
與拋物線
交于
,
兩點(diǎn),過
,
分別作拋物線
的切線
與
,
與
交于點(diǎn)
.
(1)求拋物線
的標(biāo)準(zhǔn)方程;
(2)若
,求
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
過橢圓
的左、右焦點(diǎn)
和短軸的端點(diǎn)
(點(diǎn)
在點(diǎn)
上方).
為圓
上的動(dòng)點(diǎn)(點(diǎn)
不與
重合),直線
分別與橢圓交于點(diǎn)
,其中點(diǎn)
構(gòu)成四邊形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求四邊形
面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“克拉茨猜想”又稱“
猜想”,是德國(guó)數(shù)學(xué)家洛薩克拉茨在
年世界數(shù)學(xué)家大會(huì)上公布的一個(gè)猜想:任給一個(gè)正整數(shù)
,如果
是偶數(shù),就將它減半;如果
為奇數(shù)就將它乘
加
,不斷重復(fù)這樣的運(yùn)算,經(jīng)過有限步后,最終都能夠得到
,得到
即終止運(yùn)算,己知正整數(shù)
經(jīng)過
次運(yùn)算后得到
,則
的值為( )
A.
或
B.
或
C.
D.
或
或![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,且以橢圓上的點(diǎn)和長(zhǎng)軸兩端點(diǎn)為頂點(diǎn)的三角形的面積的最大值為
.
(1)求橢圓
的方程;
(2)經(jīng)過定點(diǎn)
的直線
交橢圓
于不同的兩點(diǎn)
、
,點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn)為
,試證明:直線
與
軸的交點(diǎn)
為一個(gè)定點(diǎn),且
(
為原點(diǎn)).
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com