在數(shù)列
中,
(
).
(1)求
的值;
(2)是否存在常數(shù)
,使得數(shù)列
是一個(gè)等差數(shù)列?若存在,求
的值及
的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}滿足a1=3,an+1=an+p·3n(n∈N*,p為常數(shù)),a1,a2+6,a3成等差數(shù)列.
(1)求p的值及數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=
,證明:bn≤
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列
的前
項(xiàng)和
滿足
,其中
.
⑴若
,求
及
;
⑵若
,求證:
,并給出等號(hào)成立的充要條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列
,
,若以
為系數(shù)的二次方程:
都有根
滿足
.
(1)求證:
為等比數(shù)列
(2)求
.
(3)求
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知{an}是等差數(shù)列,a1=3,Sn是其前n項(xiàng)和,在各項(xiàng)均為正數(shù)的等比數(shù)列{bn}中,b1=1,且b2+S2=10,S5 =5b3+3a2.
(I )求數(shù)列{an}, {bn}的通項(xiàng)公式;
(II)設(shè)
,數(shù)列{cn}的前n項(xiàng)和為T(mén)n,求證![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
是公比為
的等比數(shù)列,且
成等差數(shù)列.
⑴求q的值;
⑵設(shè)
是以2為首項(xiàng),
為公差的等差數(shù)列,其前
項(xiàng)和為
,當(dāng)n≥2時(shí),比較
與
的大小,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
對(duì)于任意的
(
不超過(guò)數(shù)列的項(xiàng)數(shù)),若數(shù)列的前
項(xiàng)和等于該數(shù)列的前
項(xiàng)之積,則稱(chēng)該數(shù)列為
型數(shù)列。
(1)若數(shù)列
是首項(xiàng)
的
型數(shù)列,求
的值;
(2)證明:任何項(xiàng)數(shù)不小于3的遞增的正整數(shù)列都不是
型數(shù)列;
(3)若數(shù)列
是
型數(shù)列,且
試求
與
的遞推關(guān)系,并證明
對(duì)
恒成立。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若正數(shù)項(xiàng)數(shù)列
的前
項(xiàng)和為
,首項(xiàng)
,點(diǎn)
在曲線
上.
(1)求
;
(2)求數(shù)列
的通項(xiàng)公式
;
(3)設(shè)
,
表示數(shù)列
的前項(xiàng)和,若
恒成立,求
及實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列
的前
項(xiàng)和為
,對(duì)任意的
,都有
,且
;數(shù)列
滿足
.
(Ⅰ)求
的值及數(shù)列
的通項(xiàng)公式;
(Ⅱ)求證:
對(duì)一切
成立.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com