【題目】已知函數(shù)
是定義在
上的奇函數(shù),當(dāng)
時,
.
(1)求
在
上的解析式;
(2)若
,函數(shù)
,是否存在實數(shù)
使得
的最小值為
,若存在,求
的值;若不存在,說明理由.
【答案】(1)
;(2)![]()
【解析】
(1)由函數(shù)的奇偶性求對稱區(qū)間上的解析式;
(2)將
的表達(dá)式化簡得到關(guān)于
的二次函數(shù)的形式,討論對稱軸與所給區(qū)間的關(guān)系,求出最小值,滿足題意,求出
的值。
(1)
是定義在
上的奇函數(shù),所以
,
不妨設(shè)
,則
,![]()
,
若
,則
,故
所以
.
(2)由(1)得
,
當(dāng)
時,
,
所以![]()
![]()
![]()
令
,則
,
所以函數(shù)
在
上的最小值
即為函數(shù)
在
上的最小值,
對稱軸為
,
當(dāng)
即
時,函數(shù)
在區(qū)間
上是增函數(shù),
所以
,解得
,
當(dāng)
,即
時,
,
化簡得
,
,解得
或
,
因為
,
,所以此時
,
當(dāng)
,即
時,函數(shù)
在區(qū)間
上是減函數(shù),
所以
,解得
,
所以
,綜上所述,存在,
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位擬建一個扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點
為圓心的兩個同心圓弧和延長后通過點
的兩條直線段圍成.按設(shè)計要求扇環(huán)面的周長為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為
米,圓心角為
(弧度).
![]()
(1)求
關(guān)于
的函數(shù)關(guān)系式;
(2)已知在花壇的邊緣(實線部分)進(jìn)行裝飾時,直線部分的裝飾費用為4元/米,弧線部分的裝飾費用為9元/米.設(shè)花壇的面積與裝飾總費用的比為
,求
關(guān)于
的函數(shù)關(guān)系式,并求出
為何值時,
取得最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
是定義在
上的奇函數(shù),且
.
(1)求
的解析式;
(2)判斷
的單調(diào)性,并證明你的結(jié)論;
(3)解不等式
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義域在R上的奇函數(shù),當(dāng)x>0時,f(x)=x2﹣2x.
(1)求出函數(shù)f(x)在R上的解析式;
(2)寫出函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在用二次法求方程3x+3x-8=0在(1,2)內(nèi)近似根的過程中,已經(jīng)得到f(1)<0,f(1.5)>0,f(1.25)<0,則方程的根落在區(qū)間( 。
A.
B.
C.
D. 不能確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在三棱臺
中,點
在
上,且
,點
是
內(nèi)(含邊界)的一個動點,且有平面
平面
,則動點
的軌跡是( )
![]()
A. 平面B. 直線C. 線段,但只含1個端點D. 圓
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x|x﹣a|+2x(a∈R).
(1)若函數(shù)f(x)在R上單調(diào)遞增,求實數(shù)a的取值范圍;
(2)若存在實數(shù)a∈[﹣4,4]使得關(guān)于x的方程f(x)﹣tf(a)=0恰有三個不相等的實數(shù)根,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的右焦點為
,點
為橢圓
上的動點,若
的最大值和最小值分別為
和
.
(I)求橢圓
的方程
(Ⅱ)設(shè)不過原點的直線
與橢圓
交于
兩點,若直線
的斜率依次成等比數(shù)列,求
面積的最大值
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com