| A. | -2 | B. | -1 | C. | 2 | D. | 1 |
分析 作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),通過(guò)平移即可求z的最大值.
解答
解:作出不等式$\left\{\begin{array}{l}x-3y+1≤0\\ x+y-3≤0\\ x-1≥0\end{array}\right.$對(duì)應(yīng)的平面區(qū)域(陰影部分),
由z=y-x,得y=x+z,
平移直線y=x+z,由圖象可知當(dāng)直線y=x+z經(jīng)過(guò)點(diǎn)B時(shí),直線y=x+Z的截距最大,此時(shí)z最大.
由$\left\{\begin{array}{l}x+y-3=0\\ x-1=0\end{array}\right.$,解得$\left\{\begin{array}{l}x=1\\ y=2\end{array}\right.$,
即B(1,2).
此時(shí)z的最大值為:z=2-1=1,
故選:D.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $[-\frac{3π}{4},\frac{π}{4}]$ | B. | $[-\frac{π}{4},\frac{3π}{4}]$ | C. | $[-\frac{3π}{8},\frac{π}{8}]$ | D. | $[-\frac{π}{8},\frac{3π}{8}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (-∞,0) | B. | (-1,+∞) | C. | (0,+∞) | D. | (-∞,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -$\frac{7}{5}$ | B. | -$\frac{11}{5}$ | C. | $\frac{11}{5}$ | D. | $\frac{7}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{4}$ | D. | 以上都不對(duì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2$\sqrt{2}$ | B. | 2$\sqrt{3}$ | C. | $\sqrt{3}$ | D. | 3 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com