【題目】設(shè)過拋物線
的焦點(diǎn)
的直線
交拋物線于點(diǎn)
,若以
為直徑的圓過點(diǎn)
,且與
軸交于
,
兩點(diǎn),則
( )
A.3
B.2
C.-3
D.-2
【答案】C
【解析】拋物線焦點(diǎn)坐標(biāo)為F(1,0),準(zhǔn)線方程為x=﹣1
設(shè)直線MN的方程為x=ty+1,A、B的坐標(biāo)分別為(
,y1),(
,y2)
聯(lián)立直線和拋物線得到方程:y2﹣4my﹣4=0,
![]()
∴y1+y2=4m,y1y2=﹣4,
x1+x2=ty1+1+ty2+1=t(y1+y2)+2=4t2+2,
=2t2+1,
=2t,
則圓心D(2t2+1,2t),
由拋物線的性質(zhì)可知:丨AB丨=x1+x2+p=4(t2+1),
由P到圓心的距離d=
,由題意可知:d=
丨AB丨,
解得:t=1,則圓心為(3,2),半徑為4,∴圓的方程方程為(x﹣3)2+(y﹣2)2=42,
則當(dāng)y=0,求得與x軸的交點(diǎn)坐標(biāo),假設(shè)m>n,則m=3﹣2
,n=3+2
,
∴mn=(3﹣2
)(3+2
)=﹣3,
所以答案是:C.
【考點(diǎn)精析】掌握?qǐng)A的標(biāo)準(zhǔn)方程是解答本題的根本,需要知道圓的標(biāo)準(zhǔn)方程:
;圓心為A(a,b),半徑為r的圓的方程.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐V﹣ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC=
,O,M分別為AB,VA的中點(diǎn).
![]()
(1)求證:VB∥平面MOC;
(2)求證:平面MOC⊥平面VAB
(3)求三棱錐V﹣ABC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方體
的棱長(zhǎng)為1,線段
上有兩個(gè)動(dòng)點(diǎn)
,且
,則下列結(jié)論中正確的是__________.
![]()
①
平面
;
②平面
平面
;
③三棱錐
的體積為定值;
④存在某個(gè)位置使得異面直線
與
成角
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年1曰8日,中共中央、國(guó)務(wù)院隆重舉行國(guó)家科學(xué)技術(shù)獎(jiǎng)勵(lì)大會(huì),在科技界引發(fā)熱烈反響,自主創(chuàng)新正成為引領(lǐng)經(jīng)濟(jì)社會(huì)發(fā)展的強(qiáng)勁動(dòng)力.某科研單位在研發(fā)新產(chǎn)品的過程中發(fā)現(xiàn)了一種新材料,由大數(shù)據(jù)測(cè)得該產(chǎn)品的性能指標(biāo)值
與這種新材料的含量
(單位:克)的關(guān)系為:當(dāng)
時(shí),
是
的二次函數(shù);當(dāng)
時(shí),
.測(cè)得數(shù)據(jù)如表(部分)
![]()
(1)求
關(guān)于
的函數(shù)關(guān)系式
;
(2)其函數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐
中,底面
為平行四邊形,
,
,
.![]()
(Ⅰ)證明:平面
平面
;
(Ⅱ)若二面角
為
,求
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,
是邊長(zhǎng)為
的正方形,
平面
,
,
,
與平面
所成角為
.![]()
(Ⅰ)求證:
平面
.
(Ⅱ)求二面角
的余弦值.
(Ⅲ)設(shè)點(diǎn)
是線段
上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)
的位置,使得
平面
,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Acos2(ωx+φ)+1(A>0,ω>0)的最大值為3,f(x)的圖象在y軸上的截距為2,其相鄰兩對(duì)稱軸間的距離為1,則f(1)+f(2)+f(3)+…+f(100)=( )
A.0
B.100
C.150
D.200
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sinx,若存在x1 , x2 , ,xm滿足0≤x1<x2<xm≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+|f(xn﹣1)﹣f(xn)|=12,(m≥2,m∈N*),則m的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,它的一個(gè)焦點(diǎn)到短軸頂點(diǎn)的距離為2,動(dòng)直線l:y=kx+m交橢圓E于A、B兩點(diǎn),設(shè)直線OA、OB的斜率都存在,且
.
(1)求橢圓E的方程;
(2)求證:2m2=4k2+3;
(3)求|AB|的最大值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com