【題目】下表是某地某年月平均氣溫(華氏度):
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
平均氣溫 | 21.4 | 26.0 | 36.0 | 48.8 | 59.1 | 68.6 | 73.0 | 71.9 | 64.7 | 53.5 | 39.8 | 27.7 |
以月份為x軸(
月份
),以平均氣溫為y軸.
(1)用正弦曲線去擬合這些數(shù)據(jù);
(2)估計(jì)這個正弦曲線的周期T和振幅A;
(3)下面三個函數(shù)模型中,哪一個最適合這些數(shù)據(jù)?
①
;②
;③
.
【答案】(1)作圖見解析(2)
,
(3)③最適合這些數(shù)據(jù)
【解析】
(1)由表中所給數(shù)據(jù)作出圖像,注意
月份
;(2)由圖像最高點(diǎn)與最低點(diǎn)的橫坐標(biāo)求出周期,由最大值與最小值求出A;(3) 不妨取
,分別代入三個式子中驗(yàn)證,只有③式滿足
.
解析(1)如圖.
![]()
(2)最低氣溫為1月份21.4,最高氣溫為7月份73.0,故
,所以
.
因?yàn)?/span>2A的值等于最高氣溫與最低氣溫的差,即
,所以
.
(3)因?yàn)?/span>
月份
,所以不妨取
.
代入①,得
,故①不適合,
代入②,得
,故②不適合,
代入③,得
,所以③適合.所以③最適合這些數(shù)據(jù).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)
,圓
.
(1)若直線
過點(diǎn)
且到圓心
的距離為
,求直線
的方程;
(2)設(shè)過點(diǎn)
的直線
與圓
交于
、
兩點(diǎn)(
的斜率為負(fù)),當(dāng)
時,求以線段
為直徑的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了考核甲,乙兩部門的工作情況,隨機(jī)訪問了50位市民,根據(jù)這50位市民對這兩部門的評分(評分越高表明市民的評價(jià)越高),繪制莖葉圖如下:
![]()
(1)分別估計(jì)該市的市民對甲,乙兩部門評分的中位數(shù);
(2)分別估計(jì)該市的市民對甲,乙兩部門的評分高于90的概率;
(3)根據(jù)莖葉圖分析該市的市民對甲,乙兩部門的評價(jià).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
上一點(diǎn)與兩焦點(diǎn)構(gòu)成的三角形的周長為
,離心率為
.
(1)求橢圓
的方程;
(2)設(shè)橢圓C的右頂點(diǎn)和上頂點(diǎn)分別為A、B,斜率為
的直線l與橢圓C交于P、Q兩點(diǎn)(點(diǎn)P在第一象限).若四邊形APBQ面積為
,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為落實(shí)國家“精準(zhǔn)扶貧”政策,讓市民吃上放心蔬菜,某企業(yè)于2018年在其扶貧基地投入
萬元研發(fā)資金,用于蔬菜的種植及開發(fā),并計(jì)劃今后十年內(nèi)在此基礎(chǔ)上,每年投入的資金比上一年增長10%.
(1)寫出第
年(2019年為第一年)該企業(yè)投入的資金數(shù)
(萬元)與
的函數(shù)關(guān)系式,并指出函數(shù)的定義域;
(2)該企業(yè)從第幾年開始(2019年為第一年),每年投入的資金數(shù)將超過
萬元?
(參考數(shù)據(jù)
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了解中學(xué)生的課外閱讀時間,決定在該中學(xué)的1200名男生和800名女生中按分層抽樣的方法抽取20名學(xué)生,對他們的課外閱讀時間進(jìn)行問卷調(diào)查。現(xiàn)在按課外閱讀時間的情況將學(xué)生分成三類:A類(不參加課外閱讀),B類(參加課外閱讀,但平均每周參加課外閱讀的時間不超過3小時),C類(參加課外閱讀,且平均每周參加課外閱讀的時間超過3小時)。調(diào)查結(jié)果如下表:
A類 | B類 | C類 | |
男生 | x | 5 | 3 |
女生 | y | 3 | 3 |
(I)求出表中x,y的值;
(II)根據(jù)表中的統(tǒng)計(jì)數(shù)據(jù),完成下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為“參加課外閱讀與否”與性別有關(guān);
男生 | 女生 | 總計(jì) | |
不參加課外閱讀 | |||
參加課外閱讀 | |||
總計(jì) |
(III)從抽出的女生中再隨機(jī)抽取3人進(jìn)一步了解情況,記X為抽取的這3名女生中A類人數(shù)和C類人數(shù)差的絕對值,求X的數(shù)學(xué)期望。
附:K2=
)
P(K2≥k0) | 0.10 | 0.01 | |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某港口有一個泊位,現(xiàn)統(tǒng)計(jì)了某100艘輪船在該泊位?康臅r間(單位:小時),如果?繒r間不足半小時按半小時計(jì)時,超過半小時不足1小時按1小時計(jì)時,以此類推,統(tǒng)計(jì)結(jié)果如下表:
![]()
(1)設(shè)該月100艘輪船在該泊位的平均?繒r間為
小時,求
的值;
(2)假定某天只有甲、乙兩艘輪船需要在該泊位?
小時,且在一晝夜的時間段中隨機(jī)到達(dá),求這兩艘輪船至少有一艘在停靠該泊位時必須等待的概率.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com