分析 (1)判斷AB∥平面DEF,再由直線與平面平行的判定定理進(jìn)行證明.
(2)以D為原點(diǎn),DB為x軸,DC為y軸,DA為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角B-AC-D的大。
(3)先求出平面DEF的法向量,由此能求出點(diǎn)C到平面DEF的距離.
解答
解:(1)判斷:AB∥平面DEF,
證明:在△ABC中,E,F(xiàn)分別是AC,BC的中點(diǎn),
∴EF∥AB,
又AB?平面DEF,EF?平面DEF,
∴AB∥平面DEF.
(2)以D為原點(diǎn),DB為x軸,DC為y軸,DA為z軸,建立空間直角坐標(biāo)系,
B(a,0,0),A(0,0,a),C(0,$\sqrt{3}a$,0),D(0,0,0),
$\overrightarrow{AB}$=(a,0,-a),$\overrightarrow{AC}$=(0,$\sqrt{3}a$,-a),
設(shè)平面ABC的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AB}=ax-az=0}\\{\overrightarrow{n}•\overrightarrow{AC}=\sqrt{3}ay-az=0}\end{array}\right.$,取x=$\sqrt{3}$,得$\overrightarrow{n}$=($\sqrt{3}$,1,$\sqrt{3}$),
又平面ACD的法向量$\overrightarrow{m}$=(1,0,0),
設(shè)二面角B-AC-D的大小為α,
則cosα=|cos<$\overrightarrow{n},\overrightarrow{m}$>|=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{\sqrt{3}}{\sqrt{7}}$=$\frac{\sqrt{21}}{7}$.
∴二面角B-AC-D的大小為arccos$\frac{\sqrt{21}}{7}$.
(3)C(0,$\sqrt{3}a$,o),E(0,$\frac{\sqrt{3}a}{2}$,$\frac{a}{2}$),F(xiàn)($\frac{a}{2}$,$\frac{\sqrt{3}a}{2}$,0),D(0,0,0),
$\overrightarrow{DC}$=(0,$\sqrt{3}a$,0),$\overrightarrow{DE}$=(0,$\frac{\sqrt{3}a}{2}$,$\frac{a}{2}$),$\overrightarrow{DF}$=($\frac{a}{2},\frac{\sqrt{3}a}{2}$,0),
設(shè)平面DEF的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DE}=\frac{\sqrt{3}a}{2}y+\frac{a}{2}z=0}\\{\overrightarrow{n}•\overrightarrow{DF}=\frac{a}{2}x+\frac{\sqrt{3}a}{2}y=0}\end{array}\right.$,取x=$\sqrt{3}$,得$\overrightarrow{n}$=($\sqrt{3}$,-1,$\sqrt{3}$),
∴點(diǎn)C到平面DEF的距離d=$\frac{|\overrightarrow{DC}•\overrightarrow{n}|}{|\overrightarrow{n}|}$=$\frac{\sqrt{3}a}{\sqrt{7}}$=$\frac{\sqrt{21}a}{7}$.
點(diǎn)評(píng) 本題考查直線與平面的位置關(guān)系的判斷,考查二面角、點(diǎn)到平面距離的求法,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地化空間問題為平面問題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 0 | B. | $\sqrt{2}$ | C. | 2 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com