【題目】已知曲線C1上任意一點M到直線l:y=4的距離是它到點F(0,1)距離的2倍;曲線C2是以原點為頂點,F為焦點的拋物線.
(1)求C1,C2的方程;
(2)設(shè)過點F的直線與曲線C2相交于A,B兩點,分別以A,B為切點引曲線C2的兩條切線l1,l2,設(shè)l1,l2相交于點P,連接PF的直線交曲線C1于C,D兩點,求
的最小值.
【答案】(1)
,
;(2)7
【解析】試題分析:(1)利用直接法求曲線
的軌跡方程,利用拋物線的定義求曲線
的標(biāo)準(zhǔn)方程;(2)設(shè)直線方程,聯(lián)立直線和橢圓的方程,得到關(guān)于
的一元二次方程,利用根與系數(shù)的關(guān)系、平面向量的數(shù)量積和函數(shù)的單調(diào)性進(jìn)行求解.
試題解析:(1)設(shè)M(x,y),則
=2,
∴曲線C1的方程為
+
=1,
設(shè)曲線C2的方程為x2=2py(p>0),則
=1,
∴p=2,∴曲線C2的方程為x2=4y.
(2)設(shè)A(x1,y1),B(x2,y2),AB的方程為y=kx+1,
代入曲線C2的方程得x2-4kx-4=0,
∴![]()
由y=
,∴y′=
,
∴l1:y=
x-
,l2:y=
x-
,
∴P(
,
),∴P(2k,-1),
∴kPF=
,∴CD⊥AB,
CD:y=-
x+1,
代入曲線C1的方程得(4k2+3)y2-8k2y+4k2-12=0,
設(shè)C(x3,y3),D(x4,y4),
∴![]()
∴
·
=(
+
)·(
+
)
=
·
+
·
+
·
+
·
=|
||
|+|
||
|
=(y1+1)(y2+1)+
|y3-4|·
|y4|
=(kx1+2)(kx2+2)+![]()
=k2x1x2+2k(x1+x2)+
-(y1+y2)+8
=4(k2+1)+
=
+(t+
)
(其中t=4k2+3≥3)
設(shè)f(t)=t+
(t≥3),
則f′(t)=1-
=
>0,
故f(t)在[3,+∞)單調(diào)遞增,
因此
·
=
+(t+
)
≥
+3+
=7,
當(dāng)且僅當(dāng)t=3即k=0等號成立,
故
·
的最小值為7.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知m>0,p:(x+2)(x-6)≤0,q:2-m≤x≤2+m.
(1)若p是q成立的必要不充分條件,求實數(shù)m的取值范圍;
(2)若
是
成立的充分不必要條件,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
.
(Ⅰ)當(dāng)
時,
恒成立,求
范圍;
(Ⅱ)方程
有唯一實數(shù)解,求正數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2016·懷仁期中)已知命題
:x∈[-1,2],函數(shù)f(x)=x2-x的值大于0.若
∨
是真命題,則命題
可以是( )
A. x∈(-1,1),使得cos x<![]()
B. “-3<m<0”是“函數(shù)f(x)=x+log2x+m在區(qū)間
上有零點”的必要不充分條件
C. 直線x=
是曲線f(x)=
的一條對稱軸
D. 若x∈(0,2),則在曲線f(x)=ex(x-2)上任意一點處的切線的斜率不小于-1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
為何值時,
軸為曲線
的切線;
(2)用
表示
中的最小值,設(shè)函數(shù)
,討論
零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=emx+x2-mx.
(1)證明:f(x)在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增;
(2)若對于任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤e-1,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
的標(biāo)準(zhǔn)方程為
,
為拋物線
上一動點,
(
)為其對稱軸上一點,直線
與拋物線
的另一個交點為
.當(dāng)
為拋物線
的焦點且直線
與其對稱軸垂直時,
的面積為18.
(1)求拋物線
的標(biāo)準(zhǔn)方程;
(2)記
,若
值與
點位置無關(guān),則稱此時的點
為“穩(wěn)定點”,試求出所有“穩(wěn)定點”,若沒有,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
(1)若
,求函數(shù)
的極值及單調(diào)區(qū)間;
(2)若在區(qū)間
上至少存在一點
,使
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com