設(shè)
,函數(shù)
.
(1)若x=2是函數(shù)
的極值點,求
的值;
(2)設(shè)函數(shù)
,若
≤0對一切
都成立,求
的取值范圍.
(1)
;(2)
的取值范圍是
.
解析試題分析:(1)由
,可知
,根據(jù)條件
是函數(shù)
的極值點,可得
,從而解得
,經(jīng)檢驗,當(dāng)
時,
,
是
的極值點,∴
;(2)可將不等式
變形為
,從而問題等價于,當(dāng)
,求
,令
,可證
在
上單調(diào)遞減,故
,從而可以得到
的取值范圍是
.
(1)
.
∵
是函數(shù)
的極值點,所以
,即
.
經(jīng)驗證,當(dāng)
時,
,
是
的極值點,∴
. 5分;
(2)由題設(shè),
.
對一切
都成立,
即
對一切
都成立. 7分
令
,
,則
,
由
,可知
在
上單調(diào)遞減,
∴
, 故
的取值范圍是
10分.
考點:1.利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性求極值;2.恒成立問題的處理方法.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
是函數(shù)
的一個極值點,其中
.
(1)
與
的關(guān)系式;
(2)求
的單調(diào)區(qū)間;
(3)當(dāng)
時,函數(shù)
的圖象上任意一點處的切線的斜率恒大于
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,其中
,
為自然對數(shù)的底數(shù)。
(Ⅰ)設(shè)
是函數(shù)
的導(dǎo)函數(shù),求函數(shù)
在區(qū)間
上的最小值;
(Ⅱ)若
,函數(shù)
在區(qū)間
內(nèi)有零點,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,其中
.
(1)若曲線
在點
處的切線方程為
,求函數(shù)
的解析式;
(2)討論函數(shù)
的單調(diào)性;
(3)若對于任意的
,不等式
在
上恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)若
,求曲線
在點
處的切線方程;
(2)若函數(shù)
在其定義域內(nèi)為增函數(shù),求正實數(shù)
的取值范圍;
(3)設(shè)函數(shù)
,若在
上至少存在一點
,使得
>
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=(x2+ax-2a2+3a)ex(x∈R),其中a∈R.
(1)當(dāng)a=0時,求曲線y=f(x)在點(1,f(1))處的切線的斜率;
(2)當(dāng)a≠
時,求函數(shù)y=f(x)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ln x+2x,g(x)=a(x2+x).
(1)若a=
,求F(x)=f(x)-g(x)的單調(diào)區(qū)間;
(2)若f(x)≤g(x)恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com