【題目】已知動點
到點
的距離與點
到直線
的距離的比值為
.
(1)求動點
的軌跡
的方程;
(2)設
為軌跡
與
軸正半軸的交點,
上是否存在兩點
,使得
是以
為直角頂點的等腰直角三角形?若存在,請說明滿足條件的
的個數(shù);若不存在,請說明理由.
【答案】(1)
(2)存在,3個
【解析】
(1)設動點
根據(jù)所給條件列出方程,化簡即可.
(2)由題意可知,直角邊
不可能垂直或平行于
軸,故可設
所在直線的方程為
,不妨設
,則直線
所在的方程為
. 聯(lián)立直線與曲線方程,消元即可求出
點的坐標,求出
的長,同理可得
,再由
得到方程,解得.
解:(1)設動點
,則
,
所以
,
平方并化簡,得
.
所以軌跡
的方程為
.
(2)存在. 理由如下:
由題意可知,直角邊
不可能垂直或平行于
軸,故可設
所在直線的方程為
,不妨設
,則直線
所在的方程為
.
聯(lián)立方程
消去
,并整理得
,
解得
,
將
代入
可得
,
所以點
的坐標為
.
所以
.
同理可得
,
由
,得
,
所以
,則
,解得
或
.
當
斜率
時,
斜率
;當
斜率
時,
斜率
;當
斜率
時,
斜率
.
綜上所述,符合條件的三角形有3個.
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)經過一年的新農村建設,農村的經濟收入增加了一倍.實現(xiàn)翻番.為更好地了解該地區(qū)農村的經濟收入變化情況,統(tǒng)計了該地區(qū)新農村建設前后農村的經濟收入構成比例.得到如下餅圖:
![]()
則下面結論中不正確的是
A. 新農村建設后,種植收入減少
B. 新農村建設后,其他收入增加了一倍以上
C. 新農村建設后,養(yǎng)殖收入增加了一倍
D. 新農村建設后,養(yǎng)殖收入與第三產業(yè)收入的總和超過了經濟收入的一半
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓
的長軸
,長為4,過橢圓的右焦點
作斜率為
(
)的直線交橢圓于
、
兩點,直線
,
的斜率之積為
.
![]()
(1)求橢圓
的方程;
(2)已知直線
,直線
,
分別與
相交于
、
兩點,設
為線段
的中點,求證:
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
的右焦點為
,原點為
,橢圓
的動弦
過焦點
且不垂直于坐標軸,弦
的中點為
,過
且垂直于線段
的直線交射線
于點
.
![]()
(Ⅰ)證明:點
在定直線上;
(Ⅱ)當
最大時,求
的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校學生會開展了一次關于“垃圾分類”問卷調查的實踐活動,組織部分學生干部在幾個大型小區(qū)隨機抽取了共50名居民進行問卷調查.調查結束后,學生會對問卷結果進行了統(tǒng)計,并將其中一個問題“是否知道垃圾分類方法(知道或不知道)”的調查結果統(tǒng)計如下表:
年齡(歲) |
|
|
|
|
|
|
頻數(shù) |
|
| 14 | 12 | 8 | 6 |
知道的人數(shù) | 3 | 4 | 8 | 7 | 3 | 2 |
![]()
(1)求上表中的
的值,并補全右圖所示的的頻率直方圖;
(2)在被調查的居民中,若從年齡在
的居民中各隨機選取1人參加垃圾分類知識講座,求選中的兩人中僅有一人不知道垃圾分類方法的概率
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若數(shù)列{an}滿足:
,且a1=1,則稱{an}為一個X數(shù)列.對于一個X數(shù)列{an},若數(shù)列{bn}滿足:b1=1,且
,
,則稱{bn}為{an}的伴隨數(shù)列.
(Ⅰ)若X數(shù)列{an}中a2=1,a3=0,a4=1,寫出其伴隨數(shù)列{bn}中b2,b3,b4的值;
(Ⅱ)若{an}為一個X數(shù)列,{bn}為{an}的伴隨數(shù)列,證明:“{an}為常數(shù)列”是“{bn}為等比數(shù)列”的充要條件.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年春節(jié)期間,我國高速公路繼續(xù)執(zhí)行“節(jié)假日高速公路免費政策”某路橋公司為掌握春節(jié)期間車輛出行的高峰情況,在某高速公路收費點記錄了大年初三上午9:20~10:40這一時間段內通過的車輛數(shù),統(tǒng)計發(fā)現(xiàn)這一時間段內共有600輛車通過該收費點,它們通過該收費點的時刻的頻率分布直方圖如下圖所示,其中時間段9:20~9:40記作區(qū)間
,9:40~10:00記作
,10:00~10:20記作
,10:20~10:40記作
.例如:10點04分,記作時刻64.
![]()
(1)估計這600輛車在9:20~10:40時間段內通過該收費點的時刻的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);
(2)為了對數(shù)據(jù)進行分析,現(xiàn)采用分層抽樣的方法從這600輛車中抽取10輛,再從這10輛車中隨機抽取4輛,設抽到的4輛車中,在9:20~10:00之間通過的車輛數(shù)為X,求X的分布列與數(shù)學期望;
(3)由大數(shù)據(jù)分析可知,車輛在每天通過該收費點的時刻T服從正態(tài)分布
,其中
可用這600輛車在9:20~10:40之間通過該收費點的時刻的平均值近似代替,
可用樣本的方差近似代替(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表),已知大年初五全天共有1000輛車通過該收費點,估計在9:46~10:40之間通過的車輛數(shù)(結果保留到整數(shù)).
參考數(shù)據(jù):若
,則
,
,
.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com