【題目】數(shù)列{an}定義為a1>0,a11=a,an+1=an+
an2 , n∈N*
(1)若a1=
(a>0),求
+
+…+
的值;
(2)當a>0時,定義數(shù)列{bn},b1=ak(k≥12),bn+1=﹣1+
,是否存在正整數(shù)i,j(i≤j),使得bi+bj=a+
a2+
﹣1.如果存在,求出一組(i,j),如果不存在,說明理由.
【答案】
(1)解:∵
,
∴
,
∴
,
故
,
∴
;
(2)解:由
得
,
兩邊平方得 ![]()
故
,
當b1=ak時,由
知
,
又
,數(shù)列{an}遞增,
故b2=ak﹣1,
類似地,b3=ak﹣2,…,bt=ak﹣t+1,
又
,
,
,
bi+bj=a10+a12,
∴ak﹣i+1+ak﹣j+1=a10+a12,
存在正整數(shù)i,j(i≤j),k﹣i+1=12,k﹣j+1=10i=k﹣11,j=k﹣9,
存在一組(i,j)=(k﹣11,k﹣9).
【解析】(1)化簡
可得
,從而利用裂項求和法求和.(2)易知
,從而可得
,而b1=ak , 故代入可推出b2=ak﹣1 , 從而類比可得b3=ak﹣2 , …,bt=ak﹣t+1 , 從而可得ak﹣i+1+ak﹣j+1=a10+a12 , 從而求得.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=
,則函數(shù)g(x)=f(f(x))﹣2在區(qū)間(﹣1,3]上的零點個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)
是實數(shù),已知奇函數(shù)
,
(1)求
的值;
(2)證明函數(shù)
在R上是增函數(shù);
(3)若對任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0有解,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐
中,底面為等腰梯形,且底面與側(cè)面
垂直,
,
分別為線段
的中點,
,
,
,且
.
![]()
(1)證明:
平面
;
(2)求
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在R上的可導函數(shù)f(x)的導函數(shù)為f′(x),滿足f′(x)<f(x),且f(x+2)為偶函數(shù),f(4)=1,則不等式f(x)<ex的解集為( )
A.(﹣2,+∞)
B.(0,+∞)
C.(1,+∞)
D.(4,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)求焦點在
軸,焦距為4,并且經(jīng)過點
的橢圓的標準方程;
(2)已知雙曲線的漸近線方程為
,且與橢圓
有公共焦點,求此雙曲線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線
的焦點為
拋物線
上存在一點
到焦點
的距離等于3.
(1)求拋物線
的方程;
(2)過點
的直線
與拋物線
相交于
兩點(
兩點在
軸上方),點
關(guān)于
軸的對稱點為
,且
,求
的外接圓的方程.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com