【題目】已知數(shù)列{an}中,a1=1,前n項(xiàng)和Sn=
an .
(1)求a2 , a3 , 及{an}的通項(xiàng)公式.
(2)求{
}的前n項(xiàng)和Tn , 并證明:1≤Tn<2.
【答案】
(1)解:由S2=
a2,a1=1,得到3(a1+a2)=4a2,
解得:a2=3a1=3;
由S3=
a3得3(a1+a2+a3)=5a3,
解得:a3=
(a1+a2)=6.
由題設(shè)知a1=1,
當(dāng)n>1時(shí)有an=Sn﹣Sn﹣1=
an﹣
an﹣1,
整理得:an=
an﹣1.
于是a1=1,a2=
a1,a3=
a2,…,an﹣1=
an﹣2,an=
an﹣1,
將以上n個(gè)等式兩端分別相乘,整理得an=
,
綜上,{an}的通項(xiàng)公式an= ![]()
(2)解:∵
=
,
∴Tn=2[
+
+…+
]=2(1﹣
+
﹣
+…+
﹣
)=2(1﹣
)=2﹣
<2,即Tn<2,
又Tn+1>Tn,{Tn}單調(diào)增,
∴Tn>=T1=1,
則1≤Tn<2
【解析】(1)根據(jù)已知等式確定出a2 , a3 , 得出{an}的通項(xiàng)公式即可;(2)表示出{
}的前n項(xiàng)和Tn , 根據(jù)前n項(xiàng)和Tn為遞增數(shù)列,確定出Tn的范圍,即可得證.
【考點(diǎn)精析】本題主要考查了數(shù)列的前n項(xiàng)和的相關(guān)知識(shí)點(diǎn),需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系
才能正確解答此題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2﹣(2m+1)x+2m(m∈R).
(1)當(dāng)m=1時(shí),解關(guān)于x的不等式xf(x)≤0;
(2)解關(guān)于x的不等式f(x)>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)銷(xiāo)商經(jīng)銷(xiāo)某種農(nóng)產(chǎn)品,在一個(gè)銷(xiāo)售季度內(nèi),每售出
該產(chǎn)品獲利潤(rùn)500元,未售出的產(chǎn)品,每
虧損300元.根據(jù)歷史資料,得到銷(xiāo)售季度內(nèi)市場(chǎng)需求量的頻率分布直方圖,如圖所示.經(jīng)銷(xiāo)商為下一個(gè)銷(xiāo)售季度購(gòu)進(jìn)了
該農(nóng)產(chǎn)品.以
(單位:
)表示下一個(gè)銷(xiāo)售季度內(nèi)的市場(chǎng)需求量,
(單位:元)表示下一個(gè)銷(xiāo)售季度內(nèi)經(jīng)銷(xiāo)該農(nóng)產(chǎn)品的利潤(rùn).
![]()
(1)將
表示為
的函數(shù);
(2)根據(jù)直方圖估計(jì)利潤(rùn)
不少于57000元的概率;
(3)在直方圖的需求量分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個(gè)值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點(diǎn)值的概率(例如:若需求量
,則取
,且
的概率等于需求量落入
的頻率),求
的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正三棱柱
的各條棱長(zhǎng)均相等,
為
的中點(diǎn),
分別是線(xiàn)段
和線(xiàn)段
上的動(dòng)點(diǎn)(含端點(diǎn)),且滿(mǎn)足
.當(dāng)
運(yùn)動(dòng)時(shí),下列結(jié)論中不正確的是( )
![]()
A. 平面
平面
B. 三棱錐
的體積為定值
C.
可能為直角三角形 D. 平面
與平面
所成的銳二面角范圍為![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某校舉行的數(shù)學(xué)競(jìng)賽中,全體參賽學(xué)生的競(jìng)賽成績(jī)近似地服從正態(tài)分布N(70,100).已知成績(jī)?cè)?0分以上的學(xué)生有12人.
(1)試問(wèn)此次參賽學(xué)生的總數(shù)約為多少人?
(2)若成績(jī)?cè)?0分以上(含80分)為優(yōu),試問(wèn)此次競(jìng)賽成績(jī)?yōu)閮?yōu)的學(xué)生約為多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C:
=1(a>b>0)的離心率為
,以原點(diǎn)為圓心,橢圓C的短半軸長(zhǎng)為半徑的圓與直線(xiàn)x﹣y+2=0相切. ![]()
(1)求橢圓C的方程;
(2)已知點(diǎn)P(0,1),Q(0,2).設(shè)M,N是橢圓C上關(guān)于y軸對(duì)稱(chēng)的不同兩點(diǎn),直線(xiàn)PM與QN相交于點(diǎn)T,求證:點(diǎn)T在橢圓C上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)L經(jīng)過(guò)點(diǎn)P(﹣4,﹣3),且被圓(x+1)2+(y+2)2=25截得的弦長(zhǎng)為8,則直線(xiàn)L的方程是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(其中
,
為常數(shù),
為自然對(duì)數(shù)的底數(shù)).
(1)討論函數(shù)
的單調(diào)性;
(2)設(shè)曲線(xiàn)
在
處的切線(xiàn)為
,當(dāng)
時(shí),求直線(xiàn)
在
軸上截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙等五名奧運(yùn)志愿者被隨機(jī)地分到A,B,C,D四個(gè)不同的崗位服務(wù),每個(gè)崗位至少有一名志愿者.
(1)求甲、乙兩人同時(shí)參加A崗位服務(wù)的概率;
(2)求甲、乙兩人不在同一個(gè)崗位服務(wù)的概率;
(3)設(shè)隨機(jī)變量ξ為這五名志愿者中參加A崗位服務(wù)的人數(shù),求ξ的分布列.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com