(本題滿分13分)設數(shù)列
為單調(diào)遞增的等差數(shù)列
且
依次成等比數(shù)列.
(Ⅰ)求數(shù)列
的通項公式
;
(Ⅱ)若
求數(shù)列
的前
項和
;
(Ⅲ)若
,求證:![]()
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分14分) 本題共有2個小題,第1小題滿分6分,第2小題滿分8分.
已知數(shù)列
滿足
.
(1)設
,證明:數(shù)列
為等差數(shù)列,并求數(shù)列
的通項公式;
(2)求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
正項單調(diào)數(shù)列
的首項為
,
時,
,數(shù)列
對任意
均有![]()
(1)求證:數(shù)列
是等差數(shù)列;
(2)已知
,數(shù)列
滿足
,記數(shù)列
的前
項和為
,求證
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分13分)
已知二次函數(shù)
同時滿足:①不等式
的解集有且只有一個元素;②在定義域內(nèi)存在
,使得不等式
成立.
設數(shù)列
的前
項和
,
(1)求數(shù)列
的通項公式;
(2)數(shù)列
中,令
,![]()
,求
;
(3)設各項均不為零的數(shù)列
中,所有滿足
的正整數(shù)
的個數(shù)稱為這個數(shù)列
的變號數(shù)。令
(
為正整數(shù)),求數(shù)列
的變號數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分18分) 本題共有3個小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分8分.
(理)對于數(shù)列
,從中選取若干項,不改變它們在原來數(shù)列中的先后次序,得到的數(shù)列稱為是原來數(shù)列的一個子數(shù)列. 某同學在學習了這一個概念之后,打算研究首項為正整數(shù)
,公比為正整數(shù)
的無窮等比數(shù)列
的子數(shù)列問題. 為此,他任取了其中三項
.
(1) 若
成等比數(shù)列,求
之間滿足的等量關系;
(2) 他猜想:“在上述數(shù)列
中存在一個子數(shù)列
是等差數(shù)列”,為此,他研究了
與
的大小關系,請你根據(jù)該同學的研究結果來判斷上述猜想是否正確;
(3) 他又想:在首項為正整數(shù)
,公差為正整數(shù)
的無窮等差數(shù)列中是否存在成等比數(shù)列的子數(shù)列?請你就此問題寫出一個正確命題,并加以證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分14分)數(shù)列
的前
項和為
,
,
,等差數(shù)列
滿足
,
(I)分別求數(shù)列
,
的通項公式;
(II)若對任意的
,
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)已知數(shù)列
滿足
,
(
).
(Ⅰ)求數(shù)列
的通項公式;
(Ⅱ)若數(shù)列
滿足
(
),證明:數(shù)列
是等差數(shù)列;
(Ⅲ)證明:
(
).
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com