欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

19.已知平面內(nèi)三向量$\overrightarrow a$=(2,1),$\overrightarrow b$=(-1,3),$\overrightarrow c$=(-2,2)
(1)求滿足$\overrightarrow a=m\overrightarrow b+n\overrightarrow c$的實(shí)數(shù)m,n;
(2)若 $(2\overrightarrow a+k\overrightarrow{c)}$∥$(\overrightarrow b+\overrightarrow{c)}$求實(shí)數(shù)k的值;
(3)若$(2\overrightarrow a+k\overrightarrow{c)}$⊥$(\overrightarrow b+\overrightarrow{c)}$求實(shí)數(shù)k的值.

分析 (1)$m\overrightarrow+n\overrightarrow{c}$=m(-1,3)+n(-2,2)=(-m-2n,3m+2n)=(2,1),利用向量相等即可得出.
(2)$2\overrightarrow{a}+k\overrightarrow{c}$=2(2,1)+k(-2,2)=(4-2k,2+2k).$\overrightarrow$+$\overrightarrow{c}$=(-3,5).利用向量共線定理即可得出.
(3)由(2)利用向量垂直與數(shù)量積的關(guān)系即可得出.

解答 解:(1)$m\overrightarrow+n\overrightarrow{c}$=m(-1,3)+n(-2,2)=(-m-2n,3m+2n)=(2,1),
∴$\left\{\begin{array}{l}{-m-2n=2}\\{3m+2n=1}\end{array}\right.$,解得m=$\frac{3}{2}$,n=-$\frac{7}{4}$.
(2)$2\overrightarrow{a}+k\overrightarrow{c}$=2(2,1)+k(-2,2)=(4-2k,2+2k).
$\overrightarrow$+$\overrightarrow{c}$=(-3,5).
∵$(2\overrightarrow a+k\overrightarrow{c)}$∥$(\overrightarrow b+\overrightarrow{c)}$,∴5(4-2k)-(-3)(2+2k)=0,解得k=$\frac{13}{2}$.
(3)∵$(2\overrightarrow a+k\overrightarrow{c)}$⊥$(\overrightarrow b+\overrightarrow{c)}$,由(2)可得:-3(4-2k)+5(2+2k)=0.
∴k=$\frac{1}{8}$.

點(diǎn)評(píng) 本題考查了向量共線定理、向量垂直與數(shù)量積的關(guān)系、向量相等、向量坐標(biāo)運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知數(shù)列{an}滿足關(guān)系式Sn+an=$\frac{n-1}{n(n+1)}$(n∈N*),設(shè)bn=an+$\frac{1}{n(n+1)}$.
(1)求證:數(shù)列{bn}為等比數(shù)列;
(2)求an及Sn;
(3)設(shè)cn=Sn+nan,Tn為數(shù)列{cn}的前n項(xiàng)和,求證:Tn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知m∈R,要使函數(shù)f(x)=|x2-4x+9-2m|+2m在區(qū)間[0,4]上的最大值是9,則m的取值范圍是(-∞,$\frac{7}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.?dāng)?shù)列{an}中,a1=1,an=$\sqrt{{a}_{n}{a}_{n+1}-2}$.
(1)證明:an<an+1
(2)證明:anan+1≥2n+1;
(3)設(shè)bn=$\frac{{a}_{n}}{\sqrt{n}}$,證明:2<bn<$\sqrt{5}$(n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知二次函數(shù)f(x)滿足f(2+x)=f(2-x),且f(x)在[0,2]上是增函數(shù),若f(a)≥f(0),則實(shí)數(shù)a的取值范圍是(  )
A.[0,+∞)B.(-∞,0]C.(-∞,0]∪[4,+∞)D.[0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.異面直線l與m所成的角為60°,異面直線l與n所成的角為45°,則異面直線m與n所成的角θ的范圍是(  )
A.15°≤θ≤90°B.60°≤θ≤90°C.15°≤θ≤105°D.30°≤θ≤105°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)y=xlnx+1的單調(diào)減區(qū)間是$({0,\frac{1}{e}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的菱形,∠ABC=60°,E為AB的中點(diǎn),PA⊥平面ABCD,PC與平面PAD所成的角的正弦值為$\frac{{\sqrt{6}}}{4}$.
(1)在棱PD上求一點(diǎn)F,使AF∥平面PEC;
(2)求二面角D-PE-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知f(x)=e2x+ln(x+a).
(Ⅰ)當(dāng)a=1時(shí),求f(x)在(0,1)處的切線方程;
(Ⅱ)若存在x0∈[0,+∞),使得$f({x_0})<2ln({{x_0}+a})+x_0^2$成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案