【題目】某學(xué)校為調(diào)查高三年級(jí)學(xué)生的身高情況,按隨機(jī)抽樣的方法抽取100名學(xué)生,得到男生身高情況的頻率分布直方圖(圖(1))和女生身高情況的頻率分布直方圖(圖(2)).已知圖(1)中身高在
的男生人數(shù)有16人.
![]()
(1)試問(wèn)在抽取的學(xué)生中,男,女生各有多少人?
(2)根據(jù)頻率分布直方圖,完成下列的
列聯(lián)表,并判斷能有多大(百分之幾)的把握認(rèn)為“身高與性別有關(guān)”?
|
| 總計(jì) | |
男生身高 | |||
女生身高 | |||
總計(jì) |
(3)在上述100名學(xué)生中,從身高在
之間的男生和身高在
之間的女生中間按男、女性別分層抽樣的方法,抽出6人,從這6人中選派2人當(dāng)旗手,求2人中恰好有一名女生的概率.
參考公式:![]()
參考數(shù)據(jù):
| 0.025 | 0.010 | 0.005 | 0.001 |
5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)40,60;(2)列聯(lián)表見(jiàn)解析,有
的把握認(rèn)為身高與性別有關(guān);(3)
.
【解析】
(1)根據(jù)直方圖求出男生的人數(shù)為40,再求女生的人數(shù);(2)完成列聯(lián)表,再利用獨(dú)立性檢驗(yàn)求出有
的把握認(rèn)為身高與性別有關(guān);(3)利用古典概型的概率公式求出2人中恰好有一名女生的概率.
(1)直方圖中,因?yàn)樯砀咴?/span>
的男生的頻率為0.4,
設(shè)男生數(shù)為
,則
,得
.
由男生的人數(shù)為40,得女生的人數(shù)為
.
(2)男生身高
的人數(shù)
,
女生身高
的人數(shù)
,
所以可得到下列列聯(lián)表:
|
| 總計(jì) | |
男生身高 | 30 | 10 | 40 |
女生身高 | 6 | 54 | 60 |
總計(jì) | 36 | 64 | 100 |
![]()
,
所以能有
的把握認(rèn)為身高與性別有關(guān);
(3)在
之間的男生有12人,在
之間的女生人數(shù)有6人.
按分層抽樣的方法抽出6人,則男生占4人,女生占2人.
設(shè)男生為
,
,
,
,女生為
,
.
從6人任選2名有:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
共15種可能,
2人中恰好有一名女生:
,
,
,
,
,
,
,
共8種可能,
故所求概率為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四棱錐
中,四邊形
為矩形,
為等腰三角形,
,平面
平面
,且
,
,
分別為
的中點(diǎn).
![]()
(1)證明:
平面
;
(2)證明:平面
平面
;
(3)求四棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在實(shí)數(shù)集R中,我們定義的大小關(guān)系“>”為全體實(shí)數(shù)排了一個(gè)“序”.類似的,我們?cè)谄矫嫦蛄考?/span>
上也可以定義一個(gè)稱“序”的關(guān)系,記為“
”.定義如下:對(duì)于任意兩個(gè)向量
,“
”當(dāng)且僅當(dāng)“
”或“
”。按上述定義的關(guān)系“
”,給出如下四個(gè)命題:
①若
,則
;
②若
,則
;
③若
,則對(duì)于任意
;
④對(duì)于任意向量
,若
,則
。
其中真命題的序號(hào)為__________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分12分) 如圖,
的外接圓
的半徑為
,
所在的平面,
,
,
,且
,
.
![]()
(1)求證:平面ADC
平面BCDE.
(2)試問(wèn)線段DE上是否存在點(diǎn)M,使得直線AM與平面ACD所成角的正弦值為
?若存在,
確定點(diǎn)M的位置,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)
滿足:對(duì)任意實(shí)數(shù)
以及定義中任意兩數(shù)
、
(
),恒有
,則稱
是下凸函數(shù).
(1)證明:函數(shù)
是下凸函數(shù);
(2)判斷
是不是下凸函數(shù),并說(shuō)明理由;
(3)若
是定義在
上的下凸函數(shù),常數(shù)
,滿足:
,
,且
,求證:
,并求
在
上的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知實(shí)數(shù)
,函數(shù)
.
(1)當(dāng)
時(shí),求函數(shù)
的值域;
(2)當(dāng)
時(shí),判斷函數(shù)
的單調(diào)性,并證明;
(3)求實(shí)教
的范圍,使得對(duì)于區(qū)間
上的任意三個(gè)實(shí)數(shù)
,都存在以
為邊長(zhǎng)的三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)若
時(shí),
的解集為
時(shí),求實(shí)數(shù)
的值;
(2)若對(duì)任意
,存在
,使
,求實(shí)數(shù)
的范圍;
(3)集合
,若
,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題錯(cuò)誤的是( )
A. 命題“若
,則
”的逆否命題為“若
,則
”
B. 若
為假命題,則
均為假命題
C. 對(duì)于命題
:![]()
,使得
,則
:![]()
,均有![]()
D. “
”是“
”的充分不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
且
.
(1)求實(shí)數(shù)
的值;
(2)判斷函數(shù)
在區(qū)間
上的單調(diào)性,并用函數(shù)單調(diào)性的定義證明;
(3)求實(shí)數(shù)
的取值范圍,使得關(guān)于
的方程
分別為:
①有且僅有一個(gè)實(shí)數(shù)解;②有兩個(gè)不同的實(shí)數(shù)解;③有三個(gè)不同的實(shí)數(shù)解.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com