分析 (1)過M作MP⊥AB,垂足為P,連接PN.運用平行線成比例可得PN∥AF,再由面面垂直的性質定理,可得AD⊥AF,根據勾股定理,我們易得MN2=MP2+PN2,可得MN的長度;
(2)由二次函數的性質,易得到MN的最小值.
解答 解:
(1)過M作MP⊥AB,垂足為P,連接PN.
∵$\frac{AM}{MC}$=$\frac{AP}{PB}$,$\frac{AM}{MC}$=$\frac{FN}{NB}$,∴$\frac{AP}{PB}$=$\frac{FN}{NB}$,
∴PN∥AF,
平面ABCD⊥平面ABEF,AB⊥AD,
可得AD⊥平面BF,即有AD⊥AF,
即有∠MPN=90°MP=1-$\frac{\sqrt{2}}{2}$a,PN=$\frac{\sqrt{2}}{2}$a,
由勾股定理知:MN2=MP2+PN2=(1-$\frac{\sqrt{2}}{2}$a)2+($\frac{\sqrt{2}}{2}$a)2
=a2-$\sqrt{2}$a+1=(a-$\frac{\sqrt{2}}{2}$)2+$\frac{1}{2}$,
則MN=$\sqrt{{a}^{2}-\sqrt{2}a+1}$(0<a<$\sqrt{2}$);
(2)MN2=a2-$\sqrt{2}$a+1=(a-$\frac{\sqrt{2}}{2}$)2+$\frac{1}{2}$,
當a=$\frac{\sqrt{2}}{2}$時,MN取得最小值為$\frac{\sqrt{2}}{2}$.
點評 本題考查的知識點是空間中兩點之間的距離運算,關鍵是將空間兩點間的距離表示成a的函數,進而轉化成求函數最值的問題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | 關于原點對稱 | B. | 關于點($\frac{π}{6}$,0)對稱 | ||
| C. | 關于y軸對稱 | D. | 關于直線$x=\frac{π}{12}$對稱 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | {x|-1≤x≤2} | B. | {x|-1≤x<2} | C. | {x|-1<x<2} | D. | {x|-2<x≤1} |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | 第一或第二象限 | B. | 第一或第三象限 | C. | 第二或第四象限 | D. | 第四或第三象限 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | 最大值是$\frac{5}{4}$,最小值是1 | B. | 最大值是1,最小值是$\frac{1}{4}$-$\sqrt{3}$ | ||
| C. | 最大值是2,最小值是$\frac{1}{4}$-$\sqrt{3}$ | D. | 最大值是2,最小值是$\frac{5}{4}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com