【題目】如圖所示,矩形
中,
,
,沿對角線
把
折起,使點(diǎn)
在平面
上的射影
落在
上.
![]()
(1)求證:平面
平面
;
(2)求三棱錐
的體積.
【答案】(1)見解析(2)![]()
【解析】解:
試題分析:
(1)利用題意證得CD⊥平面ABC.然后由面面垂直的判斷定理即可證得平面ACD⊥平面ABC.
(2)三棱錐的體積關(guān)鍵在于選擇合適的頂點(diǎn)和底面,以點(diǎn)A為頂點(diǎn)計(jì)算可得VA-BCD=![]()
試題解析:
(1)∵AE⊥平面BCD,∴AE⊥CD.
又BC⊥CD,且AE∩BC=E,
∴CD⊥平面ABC.
又CD平面ACD,
∴平面ACD⊥平面ABC.
(2)由(1)知,CD⊥平面ABC,
又AB平面ABC,∴CD⊥AB.
又∵AB⊥AD,CD∩AD=D,
∴AB⊥平面ACD.
∴VA-BCD=VB-ACD=
·S△ACD·AB.
又∵在△ACD中,AC⊥CD,AD=BC=4,AB=CD=3 ,
∴AC=
.
∴VA-BCD=![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(
,且
),
(其中
為
的導(dǎo)函數(shù)).
(Ⅰ)當(dāng)
時(shí),求
的極大值點(diǎn);
(Ⅱ)討論
的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱柱
中,底面ABCD和側(cè)面
都是矩形,E是CD的中點(diǎn),
,
.
(1)求證:
;
(2)若平面
與平面
所成的銳二面角的大小為
,求線段
的長度.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)),以原點(diǎn)
為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為![]()
(Ⅰ)求曲線
的直角坐標(biāo)方程,并指出其表示何種曲線;
(Ⅱ)設(shè)直線
與曲線
交于
兩點(diǎn),若點(diǎn)
的直角坐標(biāo)為
,
試求當(dāng)
時(shí),
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】濰坊文化藝術(shù)中心的觀光塔是濰坊市的標(biāo)志性建筑,某班同學(xué)準(zhǔn)備測量觀光塔
的高度
(單位:米),如圖所示,垂直放置的標(biāo)桿
的高度
米,已知
,
.
(1)該班同學(xué)測得
一組數(shù)據(jù):
,請據(jù)此算出
的值;
(2)該班同學(xué)分析若干測得的數(shù)據(jù)后,發(fā)現(xiàn)適當(dāng)調(diào)整標(biāo)桿到觀光塔的距離
(單位:米),使
與
的差較大,可以提高測量精確度,若觀光塔高度為136米,問
為多大時(shí),
的值最大?
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市文化部門為了了解本市市民對當(dāng)?shù)氐胤綉蚯欠裣矏,?5-65歲的人群中隨機(jī)抽樣了
人,得到如下的統(tǒng)計(jì)表和頻率分布直方圖.
![]()
(1)寫出其中
及
和
的值;
(2)若從第1,2,3,組回答喜歡地方戲曲的人中用分層抽樣的方法抽取6人,求這三組每組分別抽取多少人?
(3)在(2)抽取的6人中隨機(jī)抽取2人,求抽取的2人年齡都在
的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠擬造一座平面為長方形,面積為
的三級污水處理池.由于地形限制,長、寬都不能超過
,處理池的高度一定.如果池的四周墻壁的造價(jià)為
元
,中間兩道隔墻的造價(jià)為
元
,池底的造價(jià)為
元
,則水池的長、寬分別為多少米時(shí),污水池的造價(jià)最低?最低造價(jià)為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,平面AED⊥平面ABCD,EF∥AB,AB=2,BC=EF=1,AE=
,DE=3,∠BAD=60,G為BC的中點(diǎn).
![]()
(1)求證:FG
平面BED;
(2)求證:平面BED⊥平面AED;
(3)求直線EF與平面BED所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
在
和
處取得極值,且
,曲線
在
處的切線與直線
垂直.
(Ⅰ)求
的解析式;
(Ⅱ)證明關(guān)于
的方程
至多只有兩個(gè)實(shí)數(shù)根(其中
是
的導(dǎo)函數(shù),
是自然對數(shù)的底數(shù)).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com