【題目】
已知函數(shù)
是定義在
上的奇函數(shù),且
.
(1)求實數(shù)
的值;
(2)判斷函數(shù)
的單調(diào)性,并用定義證明;
(3)解不等式:
.
【答案】(Ⅰ)
;(Ⅱ)見解析;(Ⅲ)
.
【解析】試題分析:(1)根據(jù)
定義域在
上的奇函數(shù)可得
即可求解實數(shù)
的值;(2)直接利用定義法證明單調(diào)性;(3)利用函數(shù)的單調(diào)性和奇偶性即求解不等式.
試題解析:(1)由題意可知
,解得![]()
(2)由(1)![]()
函數(shù)
在
上為增函數(shù),
證明:在
上任取
,且
,
![]()
∵
,∴
,∴
,
,
∴
,即
,
函數(shù)
在
上為增函數(shù).
(3)原不等式
,
∵
是定義在
上的奇函數(shù),∴
由對數(shù)的性質(zhì) ![]()
又∵
是
上的增函數(shù),![]()
∴
,
解得
,∴
.
【方法點晴】本題主要考查函數(shù)的奇偶性、函數(shù)的單調(diào)性及抽象函數(shù)解不等式,屬于難題.根據(jù)抽象函數(shù)的單調(diào)性解不等式應(yīng)注意以下三點:(1)一定注意抽象函數(shù)的定義域(這一點是同學(xué)們?nèi)菀资韬龅牡胤,不等掉以輕心);(2)注意應(yīng)用函數(shù)的奇偶性(往往需要先證明是奇函數(shù)還是偶函數(shù));(3)化成
后再利用單調(diào)性和定義域列不等式組.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若某產(chǎn)品的直徑長與標(biāo)準(zhǔn)值的差的絕對值不超過1mm時,則視為合格品,否則視為不合格品.在近期一次產(chǎn)品抽樣檢查中,從某廠生產(chǎn)的此種產(chǎn)品中,隨機抽取5000件進(jìn)行檢測,結(jié)果發(fā)現(xiàn)有50件不合格品.計算這50件不合格品的直徑長與標(biāo)準(zhǔn)值的差(單位:mm),將所得數(shù)據(jù)分組,得到如下頻率分布表:
![]()
(1)將上面表格中缺少的數(shù)據(jù)填在相應(yīng)位置上;
(2)估計該廠生產(chǎn)的此種產(chǎn)品中,不合格品的直徑長與標(biāo)準(zhǔn)值的差落在區(qū)間(1,3]內(nèi)的概率;
(3)現(xiàn)對該廠這種產(chǎn)品的某個批次進(jìn)行檢查,結(jié)果發(fā)現(xiàn)有20件不合格品.據(jù)此估算這批產(chǎn)品中的合格品的件數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.圓錐的底面是圓面,側(cè)面是曲面
B.用一張扇形的紙片可以卷成一個圓錐
C.一個物體上、下兩個面是相等的圓面,那么它一定是一個圓柱
D.圓臺的任意兩條母線的延長線可能相交也可能不相交
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了了解全校學(xué)生的上網(wǎng)情況,在全校采用隨機抽樣的方法抽取了40名學(xué)生(其中男女生人數(shù)恰好各占一半)進(jìn)行問卷調(diào)查,并進(jìn)行了統(tǒng)計,按男女分為兩組,再將每組學(xué)生的月上網(wǎng)次數(shù)分為5組:
,
,
,
,
,得到如圖所示的頻率分布直方圖:
(1)寫出
的值;
(2)求抽取的40名學(xué)生中月上網(wǎng)次數(shù)不少于15次的學(xué)生人數(shù);
(Ⅲ)在抽取的40名學(xué)生中,從月上網(wǎng)次數(shù)不少于20次的學(xué)生中隨機抽取2人 ,求至少抽到1名女生的概率.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-1:幾何證明選講
如圖所示,已知圓
外有一點
,作圓
的切線
,
為切點,過
的中點
,作割線
,交圓于
、
兩點,連接
并延長,交圓
于點
,連接
交圓
于點
,若
.
![]()
(Ⅰ)求證:
;
(Ⅱ)求證:四邊形
是平行四邊形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在三角形
中,
為其中位線,且
,若沿
將三角形
折起,使
,構(gòu)成四棱錐
,且
.
![]()
(1)求證:平面
平面
;
(2)當(dāng) 異面直線
與
所成的角為
時,求折起的角度
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左、右焦點分別為
,橢圓
過點
,直線
交
軸于
,且
,
為坐標(biāo)原點.
(1)求橢圓
的方程;
(2)設(shè)
是橢圓
的上頂點,過點
分別作直線
交橢圓
于
兩點,設(shè)這兩條直線的斜率分別為
,且
,證明:直線
過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海州市英才中學(xué)某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了
至
月份每月
號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料(表):
日期 |
|
|
|
|
|
|
晝夜溫差 |
|
|
|
|
|
|
就診人數(shù) |
|
|
|
|
|
|
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取
組,用剩下的
組數(shù)據(jù)求線性回歸方程,再用被選取的
組數(shù)據(jù)進(jìn)行檢驗.
(1)求選取的
組數(shù)據(jù)恰好是相鄰兩個月的概率;
(2)若選取的是
月與6月的兩組數(shù)據(jù),請根據(jù)
至
月份的數(shù)據(jù),求出
關(guān)于
的線性回歸方程
;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過
人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想.
其中回歸系數(shù)公式,
,![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com