欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

20.已知三棱錐P-ABC,若PA,PB,PC兩兩垂直,且PA=PB=PC=1,則三棱錐P-ABC的內切球半徑為$\frac{{3-\sqrt{3}}}{6}$.

分析 利用三棱錐P-ABC的內切球的球心,將三棱錐分割成4個三棱錐,利用等體積,即可求得結論.

解答 解:由題意,設三棱錐P-ABC的內切球的半徑為r,球心為O,則由等體積
VB-PAC=VO-PAB+VO-PAC+VO-ABC
可得$\frac{1}{3}×\frac{1}{2}×1×1×1$=$3×\frac{1}{3}×\frac{1}{2}×1×1×r$+$\frac{1}{3}×\frac{\sqrt{3}}{4}×2×r$,
∴r=$\frac{{3-\sqrt{3}}}{6}$,
故答案為$\frac{{3-\sqrt{3}}}{6}$.

點評 本題考查三棱錐P-ABC的內切球,考查學生分析轉化問題的能力,正確求體積是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.已知x0是函數(shù)f(x)=lnx-6+2x的零點,則下列四個數(shù)中最小的是( 。
A.lnx0B.$ln\sqrt{x_0}$C.ln(lnx0D.${(ln{x_0})^2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知直線l與雙曲線C:x2-y2=2的兩條漸近線分別交于A,B兩點,若AB的中點在該雙曲線上,O為坐標原點,則△AOB的面積為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.過橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的中心的弦為PQ,焦點為F1,F(xiàn)2,則△PQF1的最大面積是(  )
A.abB.bcC.caD.abc

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知函數(shù)f(x)的定義域為R,f′(x)為函數(shù)f(x)的導函數(shù),當x∈[0.+∞)時,2sinxcosx-f′(x)>0且?x∈R,f(-x)+f(x)+cos2x=1.則下列說法一定正確的是( 。
A.$\frac{1}{4}$-f(-$\frac{5π}{6}$)>$\frac{3}{4}$-f(-$\frac{2π}{3}$)B.$\frac{1}{4}$-f(-$\frac{5π}{6}$)>$\frac{3}{4}$-f(-$\frac{4π}{3}$)
C.$\frac{3}{4}$-f($\frac{π}{3}$)>$\frac{1}{2}$-f($\frac{3π}{4}$)D.$\frac{1}{2}$-f(-$\frac{3π}{4}$)>$\frac{3}{4}$-f($\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知復數(shù)$z=\frac{-1-2i}{{{{({1-i})}^2}}}$,則|z|=( 。
A.$\frac{5}{4}$B.$\frac{{\sqrt{5}}}{2}$C.$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.下列命題中,真命題的個數(shù)有(  )
①?x∈R,x2-x+$\frac{1}{4}$≥0;
②?x>0,lnx+$\frac{1}{lnx}$≤2;
③“a>b”是“ac2>bc2”的充要條件;
④f(x)=3x-3-x是奇函數(shù).
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=4tanx sin($\frac{π}{2}$-x)cos(x-$\frac{π}{3}$)-$\sqrt{3}$.
(1)求f(x)的最小正周期π;
(2)求f(x)的單調增區(qū)間[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.設集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}
(1)若A∪B=B,求a的值.
(2)若A∩B=B,求a的值組成的集合C.

查看答案和解析>>