【題目】已知函數(shù)
的兩條相鄰對(duì)稱軸間的距離為
,把f(x)的圖象向右平移
個(gè)單位得到函數(shù)g(x)的圖象,且g(x)為偶函數(shù),則f(x)的單調(diào)遞增區(qū)間為( )
A.![]()
B.![]()
C.![]()
D.![]()
【答案】C
【解析】解:∵函數(shù)f(x)的兩條相鄰對(duì)稱軸間的距離為
, ∴
=
,即周期T=
,則ω=2,
此時(shí)f(x)=2sin(2x+φ),
把f(x)的圖象向右平移
個(gè)單位得到函數(shù)g(x)的圖象,
則g(x)=2sin[2(x﹣
)+φ]=2sin(2x+φ﹣
),
∵g(x)為偶函數(shù),
∴φ﹣
=
+kπ,
則φ=
+kπ,k∈Z,
∵|φ|<
,
∴當(dāng)k=﹣1時(shí),φ=
﹣π=﹣
,
則f(x)=2sin(2x﹣
),
由2kπ﹣
≤2x﹣
≤2kπ+
,k∈Z,
得2kπ﹣
≤2x≤2kπ+
,
即kπ﹣
≤x≤kπ+
,k∈Z,
即函數(shù)的單調(diào)遞增區(qū)間為[kπ﹣
,kπ+
],k∈Z,
故選:C.
【考點(diǎn)精析】通過靈活運(yùn)用正弦函數(shù)的單調(diào)性和函數(shù)y=Asin(ωx+φ)的圖象變換,掌握正弦函數(shù)的單調(diào)性:在![]()
上是增函數(shù);在![]()
上是減函數(shù);圖象上所有點(diǎn)向左(右)平移
個(gè)單位長(zhǎng)度,得到函數(shù)
的圖象;再將函數(shù)
的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來的
倍(縱坐標(biāo)不變),得到函數(shù)
的圖象;再將函數(shù)
的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來的
倍(橫坐標(biāo)不變),得到函數(shù)
的圖象即可以解答此題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表是一位母親給兒子作的成長(zhǎng)記錄:
年齡/周歲 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
身高/cm | 94.8 | 104.2 | 108.7 | 117.8 | 124.3 | 130.8 | 139.1 |
根據(jù)以上樣本數(shù)據(jù),她建立了身高
(cm)與年齡x(周歲)的線性回歸方程為
,給出下列結(jié)論:
①y與x具有正的線性相關(guān)關(guān)系;
②回歸直線過樣本的中心點(diǎn)(42,117.1);
③兒子10歲時(shí)的身高是
cm;
④兒子年齡增加1周歲,身高約增加
cm.
其中,正確結(jié)論的個(gè)數(shù)是
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}的前n項(xiàng)和為Sn=a2n+b,且a1=3.
(1)求a、b的值及數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小朋友按如下規(guī)則練習(xí)數(shù)數(shù),
大拇指,
食指,
中指,
無名指,
小指,
無名指,
中指,
食指,
大拇指,
食指,
,一直數(shù)到
時(shí),對(duì)應(yīng)的指頭是( )
![]()
A. 小指 B. 中指 C. 食指 D. 無名指
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》有如下問題:有上禾三秉(古代容量單位),中禾二秉,下禾一秉,實(shí)三十九斗;上禾二秉,中禾三秉,下禾一秉,實(shí)三十四斗;上禾一秉,中禾二秉,下禾三秉,實(shí)二十六斗.問上、中、下禾一秉各幾何?依上文:設(shè)上、中、下禾一秉分別為x斗、y斗、z斗,設(shè)計(jì)如圖所示的程序框圖,則輸出的x,y,z的值分別為( ) ![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在長(zhǎng)方體
中,
,
,點(diǎn)
在棱
上移動(dòng),則直線
與
所成角的大小是 , 若
,則
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,且它的一個(gè)焦點(diǎn)
的坐標(biāo)為
.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)過焦點(diǎn)
的直線與橢圓相交于
兩點(diǎn),
是橢圓上不同于
的動(dòng)點(diǎn),試求
的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面程序框圖中,若輸入互不相等的三個(gè)正實(shí)數(shù)a,b,c(abc≠0),要求判斷△ABC的形狀,則空白的判斷框應(yīng)填入( ) ![]()
A.a2+b2>c2?
B.a2+c2>b2?
C.b2+c2>a2?
D.b2+a2=c2?
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com