【題目】已知數(shù)列{an}滿足an=
,若從{an}中提取一個(gè)公比為q的等比數(shù)列{
},其中k1=1,且k1<k2<…<kn , kn∈N* , 則滿足條件的最小q的值為 .
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A=[0,
),B=[
,1],函數(shù)f (x)=
,若x0∈A,且f[f (x0)]∈A,則x0的取值范圍是( )
A.(0,
]
B.[
,
]
C.(
,
)
D.[0,
]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
是
上的偶函數(shù).
(1)求實(shí)數(shù)
的值;
(2)判斷并證明函數(shù)
在
上單調(diào)性;
(3)求函數(shù)
在
上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
(t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2
sinθ.
(1)求圓C的直角做標(biāo)方程;
(2)圓C的圓心為C,點(diǎn)P為直線l上的動(dòng)點(diǎn),求|PC|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定橢圓
,稱圓
為橢圓
的“伴隨圓”.已知點(diǎn)
是橢圓
上的點(diǎn)
(1)若過點(diǎn)
的直線
與橢圓
有且只有一個(gè)公共點(diǎn),求
被橢圓
的伴隨圓
所截得的弦長:
(2)
是橢圓
上的兩點(diǎn),設(shè)
是直線
的斜率,且滿足
,試問:直線
是否過定點(diǎn),如果過定點(diǎn),求出定點(diǎn)坐標(biāo),如果不過定點(diǎn),試說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某小區(qū)準(zhǔn)備將閑置的一直角三角形地塊開發(fā)成公共綠地,圖中
.設(shè)計(jì)時(shí)要求綠地部分(如圖中陰影部分所示)有公共綠地走道
,且兩邊是兩個(gè)關(guān)于走道
對稱的三角形(
和
).現(xiàn)考慮方便和綠地最大化原則,要求點(diǎn)
與點(diǎn)
均不重合,
落在邊
上且不與端點(diǎn)
重合,設(shè)
.
![]()
(1)若
,求此時(shí)公共綠地的面積;
(2)為方便小區(qū)居民的行走,設(shè)計(jì)時(shí)要求
的長度最短,求此時(shí)綠地公共走道
的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:函數(shù)f(x)=x2-2mx+4在[2,+∞)上單調(diào)遞增,命題q:關(guān)于x的不等式mx2+4(m-2)x+4>0的解集為R.若p∨q為真命題,p∧q為假命題,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知AB為圓O的直徑,點(diǎn)D為線段AB上一點(diǎn),且AD=
DB,點(diǎn)C為圓O上一點(diǎn),且BC=
AC.點(diǎn)P在圓O所在平面上的正投影為點(diǎn)D,PD=DB. ![]()
(1)求證:PA⊥CD;
(2)求二面角C﹣PB﹣A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高鐵、網(wǎng)購、移動(dòng)支付和共享單車被譽(yù)為中國的“新四大發(fā)明”,彰顯出中國式創(chuàng)新的強(qiáng)勁活力.某移動(dòng)支付公司從我市移動(dòng)支付用戶中隨機(jī)抽取100名進(jìn)行調(diào)查,得到如下數(shù)據(jù):
每周移動(dòng)支付次數(shù) | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 10 | 8 | 7 | 3 | 2 | 15 |
女 | 5 | 4 | 6 | 4 | 6 | 30 |
合計(jì) | 15 | 12 | 13 | 7 | 8 | 45 |
(1)把每周使用移動(dòng)支付6次及6次以上的用戶稱為“移動(dòng)支付達(dá)人”,按分層抽樣的方法,在我市所有“移動(dòng)支付達(dá)人”中,隨機(jī)抽取6名用戶
求抽取的6名用戶中,男女用戶各多少人;
② 從這6名用戶中抽取2人,求既有男“移動(dòng)支付達(dá)人”又有女“移動(dòng)支付達(dá)人”的概率.
(2)把每周使用移動(dòng)支付超過3次的用戶稱為“移動(dòng)支付活躍用戶”,填寫下表,問能否在犯錯(cuò)誤概率不超過0.01的前提下,認(rèn)為“移動(dòng)支付活躍用戶”與性別有關(guān)?
P(χ2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | .635 |
![]()
非移動(dòng)支付活躍用戶 | 移動(dòng)支付活躍用戶 | 合計(jì) | |
男 | |||
女 | |||
合計(jì) |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com