【題目】已知直線l的斜率為k,經(jīng)過點(diǎn)(1,﹣1),將直線向右平移3個(gè)單位,再向上平移2個(gè)單位,得到直線m,若直線m不經(jīng)過第四象限,則直線l的斜率k的取值范圍是 .
【答案】0≤k≤ ![]()
【解析】解:依題意可設(shè)直線l的方程為y+1=k(x﹣1),
即y=kx﹣k﹣1,將直線l向右平移3個(gè)單位,得到直線y=k(x﹣3)﹣k﹣1,
再向上平移2個(gè)單位得到直線m:y=k(x﹣3)﹣k﹣1+2,即y=kx﹣4k+1.
由于直線m不經(jīng)過第四象限,所以應(yīng)有
,
解得0≤k≤
.
所以答案是:0≤k≤
【考點(diǎn)精析】本題主要考查了直線的斜率的相關(guān)知識點(diǎn),需要掌握一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是 k = tanα才能正確解答此題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
)的圖象在
處的切線為
(
為自然對數(shù)的底數(shù))
(1)求
的值;
(2)若
,且
對任意
恒成立,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)![]()
(1)討論
的單調(diào)性;
(2)若直線
與曲線
都只有兩個(gè)交點(diǎn),證明:這四個(gè)交點(diǎn)可以構(gòu)成一個(gè)平行四邊形,并計(jì)算該平行四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)個(gè)人月收入在5000元以內(nèi)的個(gè)人所得稅檔次為(單位:元):![]()
設(shè)某人的月收入為x元,試編一段程序,計(jì)算他應(yīng)交的個(gè)人所得稅.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
,解不等式
;
(2)若存在實(shí)數(shù)
,使得不等式
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形
是梯形,四邊形
是矩形,且平面
平面
,
,
,
,
是線段
上的動(dòng)點(diǎn).
![]()
(1)試確定點(diǎn)
的位置,使
平面
,并說明理由;
(2)在(1)的條件下,求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合P={x|2x2﹣5x+2≤0},函數(shù)y=log2(ax2+2)的定義域?yàn)镾
(1)若P∩S≠,求實(shí)數(shù)a的取值范圍
(2)若方程log2(ax2+2)=2在
上有解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2﹣2x﹣8≤0,x∈R},B={x|x2﹣(2m﹣3)x+m2﹣3m≤0,x∈R,m∈R }.
(1)若A∩B=[2,4],求實(shí)數(shù)m的值;
(2)設(shè)全集為R,若ARB,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com