分析 (Ⅰ)由三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)函數(shù)解析式可得f(x)=sin($\frac{x}{2}$+$\frac{π}{6}$)+$\frac{1}{2}$,由f(a)=$\frac{3}{2}$,解得:sin($\frac{α}{2}$+$\frac{π}{6}$)=1,進(jìn)而可求α,tanα,由兩角和的正切函數(shù)公式即可得解tan(a+$\frac{π}{3}$)的值.
(Ⅱ)結(jié)合三角形的內(nèi)角和定理及誘導(dǎo)公式可得sin(C+B)=sinA,再對(duì)已知(2a-c)cosB=bcosC,利用正弦定理化簡(jiǎn)可求B,由f(A)=$\frac{1+\sqrt{3}}{2}$,及A的范圍可得A,進(jìn)而解得C=A=B,即a=b=c,即可證明得解a2+b2+c2=ab+bc+ca.
解答 解:(Ⅰ)∵f(x)=$\sqrt{3}sin\frac{x}{4}cos\frac{x}{4}+{cos}^{2}\frac{x}{4}$=$\frac{\sqrt{3}}{2}$sin$\frac{x}{2}$+$\frac{1}{2}$cos$\frac{x}{2}$+$\frac{1}{2}$=sin($\frac{x}{2}$+$\frac{π}{6}$)+$\frac{1}{2}$,
∴f(a)=$\frac{3}{2}$=sin($\frac{α}{2}$+$\frac{π}{6}$)+$\frac{1}{2}$,解得:sin($\frac{α}{2}$+$\frac{π}{6}$)=1,
∴$\frac{α}{2}$+$\frac{π}{6}$=2kπ+$\frac{π}{2}$,k∈Z,解得:α=4kπ+$\frac{2π}{3}$,k∈Z,
∴tanα=tan(4kπ+$\frac{2π}{3}$)=tan$\frac{2π}{3}$=-$\sqrt{3}$,
∴tan(a+$\frac{π}{3}$)=$\frac{tanα+tan\frac{π}{3}}{1-tanαtan\frac{π}{3}}$=0.
(Ⅱ)證明:∵A+B+C=π,即C+B=π-A,
∴sin(C+B)=sin(π-A)=sinA,
將(2a-c)cosB=bcosC,利用正弦定理化簡(jiǎn)得:(2sinA-sinC)cosB=sinBcosC,
∴2sinAcosB=sinCcosB+sinBcosC=sin(C+B)=sinA,
在△ABC中,0<A<π,sinA>0,
∴cosB=$\frac{1}{2}$,又0<B<π,則B=$\frac{π}{3}$,
∵f(A)=$\frac{1+\sqrt{3}}{2}$=sin($\frac{A}{2}$+$\frac{π}{6}$)+$\frac{1}{2}$,解得:sin($\frac{A}{2}$+$\frac{π}{6}$)=$\frac{\sqrt{3}}{2}$,
∵0<A<π,$\frac{π}{6}$<$\frac{A}{2}$+$\frac{π}{6}$<$\frac{2π}{3}$,
∴$\frac{A}{2}$+$\frac{π}{6}$=$\frac{π}{3}$,解得:A=$\frac{π}{3}$,C=π-A-B=$\frac{π}{3}$,
∴a=b=c,
∴a2+b2+c2=ab+bc+ca.得證.
點(diǎn)評(píng) 本題主要考查了三角函數(shù)恒等變換的應(yīng)用,兩角和的正切函數(shù)公式,三角形的內(nèi)角和定理及誘導(dǎo)公式,正弦定理的綜合應(yīng)用,考查了等邊三角形的性質(zhì),考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{1}{2}$ | C. | $\sqrt{5}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com