| A. | 5$\sqrt{3}$ | B. | 30$\sqrt{3}$ | C. | $\frac{{10\sqrt{3}}}{3}$ | D. | 10$\sqrt{3}$ |
分析 根據(jù)題意求出矩形ABCD的對角線的長AC,利用球的截面圓性質(zhì)求出球心到矩形的距離,從而得出棱錐P-ABCD的高,進而可得棱錐的體積.
解答 解:∵矩形ABCD中,AB=4,BC=3
∴矩形的對角線的長AC=5,
根據(jù)球P的半徑為5,可得球心到矩形的距離d=$\frac{1}{2}$$\sqrt{100-25}$=$\frac{5\sqrt{3}}{2}$,
∴棱錐P-ABCD的高h=$\frac{5\sqrt{3}}{2}$,
可得P-ABCD的體積為V=$\frac{1}{3}×4×3×$$\frac{5\sqrt{3}}{2}$=10$\sqrt{3}$.
故選:D.
點評 本題結合球內(nèi)接矩形的形狀,求棱錐的體積,考查球內(nèi)幾何體的體積的計算,考查計算能力,空間想象能力,?碱}型.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | (-1,2,-3) | B. | (1,-2,-3) | C. | (1,2,-3) | D. | (1,-2,-3) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $4\sqrt{2}π$ | B. | $8\sqrt{2}π$ | C. | 4π | D. | $4\sqrt{2}π+4π$ |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com